Skip to main content

Chapter 7: Query Optimization and Performance

Overview

Query optimization and performance tuning are critical for building scalable applications with Vektagraf. This chapter focusescovers oncomprehensive strategies for optimizing database operations, from automatic query planning, optimization techniques,and intelligent indexing strategies,to advanced caching strategies and performance monitoring. You'll learn how to identify bottlenecks, implement optimization techniques, and build high-performance applications that scale efficiently.

Learning Objectives

By the end of this chapter, you will be able to:

  • UnderstandImplement automatic query planningoptimization using Vektagraf's built-in optimizer
  • Design and optimizationmanage techniques
  • Learnefficient indexing strategies for different query patterns
  • MasterOptimize vector search operations for maximum performance monitoring and profiling tools
  • Implement advanced caching strategies to reduce query latency
  • Monitor and analyze performance metrics to identify bottlenecks
  • Tune memory managementusage and resource allocation for optimal performance
  • Build scalable applications with predictable performance characteristics

Prerequisites

  • CompletionCompleted ofChapter Chapters4: 1-6Database Operations and Transactions
  • UnderstandingCompleted ofChapter database5: performanceVector conceptsSearch and Similarity Operations
  • KnowledgeCompleted of indexing and caching principles

Core Concepts

Content to be implemented in task 3.4

Practical Examples

Content to be implemented in task 3.4

Best Practices

Content to be implemented in task 3.4

Advanced Topics

Content to be implemented in task 3.4

Reference

Content to be implemented in task 3.4

Summary

Content to be implemented in task 3.4


Previous: Chapter 6: Graph Operations and Relationship Modeling |

  • Understanding Next:of Chapterdatabase 8:indexing Security Architectureconcepts and Encryptionperformance analysis
  • Core Concepts

    Query Optimization Pipeline

    Vektagraf's query optimizer follows a multi-stage optimization pipeline:

    1. Query Analysis: Parse and analyze query structure
    2. Index Selection: Choose optimal indexes for query execution
    3. Operation Reordering: Reorder operations for maximum efficiency
    4. Caching Strategy: Determine caching opportunities
    5. Execution Planning: Generate optimized execution plan
    6. Performance Monitoring: Track execution metrics for future optimization

    Indexing Strategy

    Vektagraf provides multiple indexing mechanisms:

    • Primary Indexes: Automatic indexes on object IDs and types
    • Property Indexes: Hash-based indexes for exact value lookups
    • Sorted Indexes: Tree-based indexes for range queries and sorting
    • Vector Indexes: Specialized indexes for similarity search (HNSW, IVFFlat)
    • Graph Indexes: Relationship-based indexes for traversal operations

    Performance Metrics

    Key performance indicators to monitor:

    • Query Latency: Time to execute individual queries
    • Throughput: Queries processed per second
    • Memory Usage: RAM consumption by indexes and caches
    • Cache Hit Rate: Percentage of queries served from cache
    • Index Efficiency: Ratio of indexed vs. full-scan operations## Pra ctical Examples

    Automatic Query Optimization

    Setting Up Query Optimization

    import 'package:vektagraf/vektagraf.dart';
    
    Future<void> setupQueryOptimization() async {
      final database = VektagrafDatabaseImpl();
      
      // Configure database with optimization enabled
      final config = VektagrafConfig(
        enableQueryOptimization: true,
        enableQueryCache: true,
        maxCacheSize: 1000,
        defaultCacheTtl: Duration(minutes: 5),
        enableAutoIndexing: true,
        indexThreshold: 10, // Create index after 10 queries
        maxIndexes: 100,
      );
      
      await database.open('optimized_database.db', config: config);
      
      try {
        // Get query optimizer instance
        final optimizer = database.queryOptimizer;
        if (optimizer != null) {
          print('Query optimization enabled');
          print('Cache enabled: ${config.enableQueryCache}');
          print('Auto-indexing enabled: ${config.enableAutoIndexing}');
        }
        
        // Example: Create sample data for optimization testing
        await _createSampleData(database);
        
        // Demonstrate different query patterns
        await _demonstrateQueryOptimization(database);
        
      } finally {
        await database.close();
      }
    }
    
    Future<void> _createSampleData(VektagrafDatabase database) async {
      final users = await database.objects<User>();
      final posts = await database.objects<Post>();
      
      // Create users with various properties for indexing
      final sampleUsers = List.generate(1000, (index) => User(
        id: VektagrafId.generate(),
        username: 'user_$index',
        email: 'user$index@example.com',
        age: 20 + (index % 50),
        city: ['New York', 'London', 'Tokyo', 'Berlin', 'Sydney'][index % 5],
        joinDate: DateTime.now().subtract(Duration(days: index % 365)),
        isActive: index % 3 == 0,
        followerCount: index * 10,
      ));
      
      // Batch insert users
      await users.saveAllInTransaction(sampleUsers);
      
      // Create posts with relationships
      final samplePosts = <Post>[];
      for (int i = 0; i < 2000; i++) {
        final author = sampleUsers[i % sampleUsers.length];
        samplePosts.add(Post(
          id: VektagrafId.generate(),
          title: 'Post $i',
          content: 'This is the content of post $i',
          authorId: author.id,
          category: ['tech', 'lifestyle', 'news', 'sports'][i % 4],
          tags: ['tag${i % 10}', 'tag${(i + 1) % 10}'],
          likeCount: i % 100,
          createdAt: DateTime.now().subtract(Duration(hours: i % 24)),
        ));
      }
      
      await posts.saveAllInTransaction(samplePosts);
      
      print('Created ${sampleUsers.length} users and ${samplePosts.length} posts');
    }
    
    Future<void> _demonstrateQueryOptimization(VektagrafDatabase database) async {
      final users = await database.objects<User>();
      final posts = await database.objects<Post>();
      
      print('\n=== Query Optimization Demonstration ===');
      
      // Query 1: Property-based filtering (will create index automatically)
      print('\n1. Property-based filtering:');
      final stopwatch = Stopwatch()..start();
      
      final activeUsers = await users
          .whereProperty('isActive', true)
          .toList();
      
      stopwatch.stop();
      print('   Found ${activeUsers.length} active users in ${stopwatch.elapsedMilliseconds}ms');
      
      // Query 2: Range query (will create sorted index)
      print('\n2. Range query optimization:');
      stopwatch.reset()..start();
      
      final youngUsers = await users
          .wherePropertyRange<int>('age', 20, 30)
          .toList();
      
      stopwatch.stop();
      print('   Found ${youngUsers.length} young users in ${stopwatch.elapsedMilliseconds}ms');
      
      // Query 3: Sorted query (uses sorted index)
      print('\n3. Sorted query optimization:');
      stopwatch.reset()..start();
      
      final topUsers = await users
          .orderByProperty<int>('followerCount', descending: true)
          .take(10)
          .toList();
      
      stopwatch.stop();
      print('   Found top 10 users by followers in ${stopwatch.elapsedMilliseconds}ms');
      
      // Query 4: Complex chained query (optimizer reorders operations)
      print('\n4. Complex chained query optimization:');
      stopwatch.reset()..start();
      
      final complexQuery = await users
          .whereProperty('city', 'New York')
          .wherePropertyRange<int>('age', 25, 35)
          .whereProperty('isActive', true)
          .orderByProperty<DateTime>('joinDate', descending: true)
          .take(5)
          .toList();
      
      stopwatch.stop();
      print('   Complex query result: ${complexQuery.length} users in ${stopwatch.elapsedMilliseconds}ms');
      
      // Show optimizer statistics
      final optimizer = database.queryOptimizer;
      if (optimizer != null) {
        print('\n=== Query Optimizer Statistics ===');
        final stats = optimizer.queryStats;
        for (final entry in stats.entries) {
          final stat = entry.value;
          print('${entry.key}:');
          print('  Executions: ${stat.totalExecutions}');
          print('  Avg time: ${stat.averageExecutionTime.inMilliseconds}ms');
          print('  Avg results: ${stat.averageResultCount.toInt()}');
        }
      }
    }
    
    // Example model classes
    class User {
      final VektagrafId id;
      final String username;
      final String email;
      final int age;
      final String city;
      final DateTime joinDate;
      final bool isActive;
      final int followerCount;
      
      User({
        required this.id,
        required this.username,
        required this.email,
        required this.age,
        required this.city,
        required this.joinDate,
        required this.isActive,
        required this.followerCount,
      });
    }
    
    class Post {
      final VektagrafId id;
      final String title;
      final String content;
      final VektagrafId authorId;
      final String category;
      final List<String> tags;
      final int likeCount;
      final DateTime createdAt;
      
      Post({
        required this.id,
        required this.title,
        required this.content,
        required this.authorId,
        required this.category,
        required this.tags,
        required this.likeCount,
        required this.createdAt,
      });
    }
    

    Advanced Index Management

    class IndexManager {
      final VektagrafDatabase database;
      
      IndexManager(this.database);
      
      /// Analyzes query patterns and creates optimal indexes
      Future<void> analyzeAndOptimizeIndexes() async {
        print('=== Index Analysis and Optimization ===');
        
        // Get index manager from database
        final indexManager = database.indexManager;
        if (indexManager == null) {
          print('Index manager not available');
          return;
        }
        
        // Analyze current index usage
        final indexStats = indexManager.indexStats;
        print('\nCurrent Index Statistics:');
        
        for (final entry in indexStats.entries) {
          final propertyName = entry.key;
          final stats = entry.value;
          
          print('$propertyName:');
          print('  Usage count: ${stats.usageCount}');
          print('  Last used: ${stats.lastUsed}');
          print('  Created: ${stats.created}');
          print('  Time since creation: ${stats.timeSinceCreation.inMinutes} minutes');
        }
        
        // Get memory usage statistics
        final memoryStats = indexManager.memoryStats;
        print('\nIndex Memory Usage:');
        print('  Total indexes: ${memoryStats.totalIndexes}');
        print('  Total entries: ${memoryStats.entryCount}');
        print('  Memory usage: ${(memoryStats.memoryUsage / 1024 / 1024).toStringAsFixed(2)} MB');
        
        // Identify optimization opportunities
        await _identifyOptimizationOpportunities(indexManager);
        
        // Create recommended indexes
        await _createRecommendedIndexes(indexManager);
        
        // Clean up unused indexes
        await _cleanupUnusedIndexes(indexManager);
      }
      
      Future<void> _identifyOptimizationOpportunities(dynamic indexManager) async {
        print('\n=== Optimization Opportunities ===');
        
        // Analyze query patterns to identify missing indexes
        final users = await database.objects<User>();
        
        // Simulate various query patterns to trigger index analysis
        final queryPatterns = [
          () => users.whereProperty('city', 'New York'),
          () => users.wherePropertyRange<int>('age', 25, 35),
          () => users.orderByProperty<int>('followerCount', descending: true),
          () => users.whereProperty('isActive', true),
        ];
        
        for (int i = 0; i < queryPatterns.length; i++) {
          final pattern = queryPatterns[i];
          
          // Execute query multiple times to trigger auto-indexing
          for (int j = 0; j < 15; j++) {
            await pattern();
          }
          
          print('Executed query pattern ${i + 1} multiple times');
        }
        
        // Check which indexes were created automatically
        final newStats = indexManager.indexStats;
        print('\nAuto-created indexes:');
        for (final propertyName in newStats.keys) {
          if (indexManager.indexedProperties.contains(propertyName)) {
            print('  - $propertyName (usage: ${newStats[propertyName]?.usageCount})');
          }
        }
      }
      
      Future<void> _createRecommendedIndexes(dynamic indexManager) async {
        print('\n=== Creating Recommended Indexes ===');
        
        // Create indexes for commonly queried properties
        final recommendedIndexes = {
          'email': false, // Hash index for exact lookups
          'joinDate': true, // Sorted index for range queries
          'createdAt': true, // Sorted index for temporal queries
          'category': false, // Hash index for categorical data
        };
        
        for (final entry in recommendedIndexes.entries) {
          final propertyName = entry.key;
          final sorted = entry.value;
          
          if (!indexManager.indexedProperties.contains(propertyName)) {
            indexManager.createIndex(propertyName, sorted: sorted);
            print('Created ${sorted ? 'sorted' : 'hash'} index for $propertyName');
          }
        }
      }
      
      Future<void> _cleanupUnusedIndexes(dynamic indexManager) async {
        print('\n=== Cleaning Up Unused Indexes ===');
        
        final indexStats = indexManager.indexStats;
        final cutoffTime = DateTime.now().subtract(Duration(hours: 24));
        
        for (final entry in indexStats.entries) {
          final propertyName = entry.key;
          final stats = entry.value;
          
          // Remove indexes that haven't been used recently and have low usage
          if (stats.usageCount < 5 && 
              (stats.lastUsed == null || stats.lastUsed!.isBefore(cutoffTime))) {
            
            // Don't remove essential indexes
            if (!['id', 'type', 'createdAt', 'updatedAt'].contains(propertyName)) {
              indexManager.dropIndex(propertyName);
              print('Dropped unused index for $propertyName');
            }
          }
        }
      }
    }
    ```#
    ## Vector Search Optimization
    
    #### Optimizing Vector Space Performance
    
    ```dart
    class VectorSearchOptimizer {
      final VektagrafDatabase database;
      
      VectorSearchOptimizer(this.database);
      
      /// Optimizes vector search performance based on usage patterns
      Future<void> optimizeVectorSpaces() async {
        print('=== Vector Search Optimization ===');
        
        // Create sample vector data for optimization testing
        await _createVectorData();
        
        // Test different vector space configurations
        await _testVectorSpaceConfigurations();
        
        // Optimize existing vector spaces
        await _optimizeExistingVectorSpaces();
        
        // Monitor vector search performance
        await _monitorVectorPerformance();
      }
      
      Future<void> _createVectorData() async {
        print('\n1. Creating vector data for optimization testing...');
        
        // Create different vector spaces for testing
        final documentVectors = database.vectorSpace('documents', 384);
        final productVectors = database.vectorSpace('products', 512);
        final userVectors = database.vectorSpace('users', 256);
        
        // Add vectors with different characteristics
        final random = Random();
        
        // Document vectors (text embeddings)
        for (int i = 0; i < 10000; i++) {
          final vector = List.generate(384, (_) => random.nextGaussian());
          await documentVectors.addVector(vector, metadata: {
            'document_id': 'doc_$i',
            'category': ['tech', 'science', 'business', 'health'][i % 4],
            'length': 100 + random.nextInt(1000),
            'created_at': DateTime.now().subtract(Duration(days: i % 365)),
          });
        }
        
        // Product vectors (feature embeddings)
        for (int i = 0; i < 5000; i++) {
          final vector = List.generate(512, (_) => random.nextGaussian());
          await productVectors.addVector(vector, metadata: {
            'product_id': 'prod_$i',
            'category': ['electronics', 'clothing', 'books', 'home'][i % 4],
            'price': 10.0 + random.nextDouble() * 1000,
            'rating': 1.0 + random.nextDouble() * 4,
          });
        }
        
        // User vectors (preference embeddings)
        for (int i = 0; i < 2000; i++) {
          final vector = List.generate(256, (_) => random.nextGaussian());
          await userVectors.addVector(vector, metadata: {
            'user_id': 'user_$i',
            'age_group': ['18-25', '26-35', '36-45', '46+'][i % 4],
            'activity_level': ['low', 'medium', 'high'][i % 3],
          });
        }
        
        print('Created vectors in 3 different spaces');
      }
      
      Future<void> _testVectorSpaceConfigurations() async {
        print('\n2. Testing vector space configurations...');
        
        // Test different algorithms and parameters
        final configurations = [
          {
            'name': 'hnsw_default',
            'algorithm': 'hnsw',
            'parameters': {'maxConnections': 16, 'efConstruction': 200, 'efSearch': 50},
          },
          {
            'name': 'hnsw_high_recall',
            'algorithm': 'hnsw',
            'parameters': {'maxConnections': 32, 'efConstruction': 400, 'efSearch': 100},
          },
          {
            'name': 'ivfflat_default',
            'algorithm': 'ivfflat',
            'parameters': {'nLists': 100, 'nProbe': 10},
          },
          {
            'name': 'ivfflat_high_accuracy',
            'algorithm': 'ivfflat',
            'parameters': {'nLists': 200, 'nProbe': 20},
          },
        ];
        
        final queryVector = List.generate(384, (_) => Random().nextGaussian());
        
        for (final config in configurations) {
          await _benchmarkConfiguration(config, queryVector);
        }
      }
      
      Future<void> _benchmarkConfiguration(
        Map<String, dynamic> config,
        List<double> queryVector,
      ) async {
        final name = config['name'] as String;
        print('\nTesting configuration: $name');
        
        // Create vector space with specific configuration
        final vectorSpace = database.vectorSpace('test_$name', 384);
        
        // Benchmark search performance
        final stopwatch = Stopwatch();
        final latencies = <int>[];
        
        // Warm up
        for (int i = 0; i < 5; i++) {
          await vectorSpace.similaritySearch(queryVector, 10);
        }
        
        // Measure performance
        for (int i = 0; i < 50; i++) {
          stopwatch.reset()..start();
          final results = await vectorSpace.similaritySearch(queryVector, 10);
          stopwatch.stop();
          
          latencies.add(stopwatch.elapsedMicroseconds);
        }
        
        // Calculate statistics
        latencies.sort();
        final avgLatency = latencies.reduce((a, b) => a + b) / latencies.length;
        final p50 = latencies[latencies.length ~/ 2];
        final p95 = latencies[(latencies.length * 0.95).floor()];
        
        print('  Average latency: ${(avgLatency / 1000).toStringAsFixed(2)}ms');
        print('  P50 latency: ${(p50 / 1000).toStringAsFixed(2)}ms');
        print('  P95 latency: ${(p95 / 1000).toStringAsFixed(2)}ms');
        
        // Measure memory usage (simplified)
        final vectorCount = await vectorSpace.vectorCount;
        final estimatedMemory = vectorCount * 384 * 4; // 4 bytes per float
        print('  Estimated memory: ${(estimatedMemory / 1024 / 1024).toStringAsFixed(2)}MB');
      }
      
      Future<void> _optimizeExistingVectorSpaces() async {
        print('\n3. Optimizing existing vector spaces...');
        
        // Get vector space optimizer
        final optimizer = VectorSpaceOptimizer(
          database: database,
          configurationManager: database.vectorSpaceConfigurationManager,
        );
        
        await optimizer.initialize();
        
        // Collect usage metrics
        await optimizer.collectUsageMetrics('documents');
        await optimizer.collectUsageMetrics('products');
        await optimizer.collectUsageMetrics('users');
        
        // Get optimization recommendations
        final documentRecommendations = await optimizer.getOptimizationRecommendations('documents');
        
        print('Optimization recommendations for documents vector space:');
        for (final recommendation in documentRecommendations) {
          print('  - ${recommendation.description}');
          print('    Impact: ${recommendation.impact}');
          print('    Confidence: ${(recommendation.confidence * 100).toStringAsFixed(1)}%');
          print('    Risk: ${recommendation.risk}');
        }
        
        // Apply automatic optimizations
        await optimizer.applyAutomaticOptimizations();
        
        await optimizer.dispose();
      }
      
      Future<void> _monitorVectorPerformance() async {
        print('\n4. Monitoring vector search performance...');
        
        final documentVectors = database.vectorSpace('documents', 384);
        final queryVector = List.generate(384, (_) => Random().nextGaussian());
        
        // Create performance monitor
        final monitor = VectorPerformanceMonitor(documentVectors);
        
        // Simulate various query patterns
        final queryPatterns = [
          {'limit': 5, 'description': 'Small result set'},
          {'limit': 20, 'description': 'Medium result set'},
          {'limit': 100, 'description': 'Large result set'},
        ];
        
        for (final pattern in queryPatterns) {
          final limit = pattern['limit'] as int;
          final description = pattern['description'] as String;
          
          print('\nTesting $description (limit: $limit):');
          
          final results = await monitor.monitoredSearch(queryVector, limit);
          final stats = monitor.getStatistics();
          
          print('  Results: ${results.length}');
          print('  Average latency: ${stats.averageDuration.inMilliseconds}ms');
          print('  Success rate: ${(stats.successRate * 100).toStringAsFixed(1)}%');
        }
      }
    }
    
    class VectorPerformanceMonitor {
      final VektagrafVectorSpace vectorSpace;
      final List<SearchMetric> _metrics = [];
      
      VectorPerformanceMonitor(this.vectorSpace);
      
      Future<List<VectorSearchResult>> monitoredSearch(
        List<double> queryVector,
        int limit,
      ) async {
        final stopwatch = Stopwatch()..start();
        
        try {
          final results = await vectorSpace.similaritySearch(queryVector, limit);
          stopwatch.stop();
          
          _metrics.add(SearchMetric(
            timestamp: DateTime.now(),
            duration: stopwatch.elapsed,
            resultCount: results.length,
            success: true,
          ));
          
          return results;
        } catch (e) {
          stopwatch.stop();
          
          _metrics.add(SearchMetric(
            timestamp: DateTime.now(),
            duration: stopwatch.elapsed,
            resultCount: 0,
            success: false,
            error: e.toString(),
          ));
          
          rethrow;
        }
      }
      
      SearchStatistics getStatistics() {
        if (_metrics.isEmpty) {
          return SearchStatistics.empty();
        }
        
        final successfulSearches = _metrics.where((m) => m.success);
        final durations = successfulSearches.map((m) => m.duration);
        
        return SearchStatistics(
          totalSearches: _metrics.length,
          successfulSearches: successfulSearches.length,
          averageDuration: durations.isEmpty 
              ? Duration.zero
              : Duration(microseconds: 
                  durations.map((d) => d.inMicroseconds).reduce((a, b) => a + b) ~/ 
                  durations.length),
          successRate: _metrics.isNotEmpty 
              ? successfulSearches.length / _metrics.length 
              : 0.0,
        );
      }
    }
    
    class SearchMetric {
      final DateTime timestamp;
      final Duration duration;
      final int resultCount;
      final bool success;
      final String? error;
      
      SearchMetric({
        required this.timestamp,
        required this.duration,
        required this.resultCount,
        required this.success,
        this.error,
      });
    }
    
    class SearchStatistics {
      final int totalSearches;
      final int successfulSearches;
      final Duration averageDuration;
      final double successRate;
      
      SearchStatistics({
        required this.totalSearches,
        required this.successfulSearches,
        required this.averageDuration,
        required this.successRate,
      });
      
      factory SearchStatistics.empty() => SearchStatistics(
        totalSearches: 0,
        successfulSearches: 0,
        averageDuration: Duration.zero,
        successRate: 0.0,
      );
    }
    
    // Extension for Gaussian random numbers
    extension RandomGaussian on Random {
      double nextGaussian() {
        // Box-Muller transform
        final u1 = nextDouble();
        final u2 = nextDouble();
        return sqrt(-2 * log(u1)) * cos(2 * pi * u2);
      }
    }
    ```### Ad
    vanced Caching Strategies
    
    #### Multi-Level Caching Implementation
    
    ```dart
    class AdvancedCacheManager {
      final VektagrafDatabase database;
      
      // L1 Cache: In-memory object cache
      final Map<String, CacheEntry> _l1Cache = {};
      
      // L2 Cache: Query result cache
      final Map<String, QueryCacheEntry> _l2Cache = {};
      
      // L3 Cache: Computed aggregation cache
      final Map<String, AggregationCacheEntry> _l3Cache = {};
      
      // Cache configuration
      final int _maxL1Size;
      final int _maxL2Size;
      final int _maxL3Size;
      final Duration _defaultTtl;
      
      AdvancedCacheManager(
        this.database, {
        int maxL1Size = 10000,
        int maxL2Size = 1000,
        int maxL3Size = 100,
        Duration defaultTtl = const Duration(minutes: 15),
      }) : _maxL1Size = maxL1Size,
           _maxL2Size = maxL2Size,
           _maxL3Size = maxL3Size,
           _defaultTtl = defaultTtl;
      
      /// Gets an object from L1 cache or database
      Future<T?> getObject<T>(VektagrafId id) async {
        final cacheKey = 'object_${id.toString()}';
        
        // Check L1 cache first
        final cached = _l1Cache[cacheKey];
        if (cached != null && !cached.isExpired) {
          cached.lastAccessed = DateTime.now();
          return cached.value as T?;
        }
        
        // Load from database
        final objects = await database.objects<T>();
        final object = objects.firstWhere((obj) => 
            objects.idOf(obj) == id, orElse: () => null);
        
        if (object != null) {
          // Store in L1 cache
          _putL1Cache(cacheKey, object);
        }
        
        return object;
      }
      
      /// Executes a query with L2 caching
      Future<List<T>> cachedQuery<T>(
        String queryKey,
        Future<List<T>> Function() queryFunction, {
        Duration? ttl,
      }) async {
        // Check L2 cache
        final cached = _l2Cache[queryKey];
        if (cached != null && !cached.isExpired) {
          cached.lastAccessed = DateTime.now();
          return List<T>.from(cached.results);
        }
        
        // Execute query
        final stopwatch = Stopwatch()..start();
        final results = await queryFunction();
        stopwatch.stop();
        
        // Store in L2 cache
        _putL2Cache(queryKey, results, stopwatch.elapsed, ttl ?? _defaultTtl);
        
        return results;
      }
      
      /// Gets or computes an aggregation with L3 caching
      Future<Map<String, dynamic>> cachedAggregation(
        String aggregationKey,
        Future<Map<String, dynamic>> Function() computeFunction, {
        Duration? ttl,
      }) async {
        // Check L3 cache
        final cached = _l3Cache[aggregationKey];
        if (cached != null && !cached.isExpired) {
          cached.lastAccessed = DateTime.now();
          return Map<String, dynamic>.from(cached.result);
        }
        
        // Compute aggregation
        final stopwatch = Stopwatch()..start();
        final result = await computeFunction();
        stopwatch.stop();
        
        // Store in L3 cache
        _putL3Cache(aggregationKey, result, stopwatch.elapsed, ttl ?? _defaultTtl);
        
        return result;
      }
      
      /// Invalidates cache entries based on patterns
      void invalidateCache({
        String? pattern,
        List<String>? keys,
        bool clearAll = false,
      }) {
        if (clearAll) {
          _l1Cache.clear();
          _l2Cache.clear();
          _l3Cache.clear();
          return;
        }
        
        if (keys != null) {
          for (final key in keys) {
            _l1Cache.remove(key);
            _l2Cache.remove(key);
            _l3Cache.remove(key);
          }
        }
        
        if (pattern != null) {
          final regex = RegExp(pattern);
          _l1Cache.removeWhere((key, _) => regex.hasMatch(key));
          _l2Cache.removeWhere((key, _) => regex.hasMatch(key));
          _l3Cache.removeWhere((key, _) => regex.hasMatch(key));
        }
      }
      
      /// Gets comprehensive cache statistics
      CacheStatistics getStatistics() {
        return CacheStatistics(
          l1Stats: _getCacheStats(_l1Cache, _maxL1Size),
          l2Stats: _getCacheStats(_l2Cache, _maxL2Size),
          l3Stats: _getCacheStats(_l3Cache, _maxL3Size),
        );
      }
      
      /// Performs cache maintenance (eviction, cleanup)
      void performMaintenance() {
        _evictExpiredEntries();
        _evictLeastRecentlyUsed();
      }
      
      // Private helper methods
      
      void _putL1Cache(String key, dynamic value) {
        if (_l1Cache.length >= _maxL1Size) {
          _evictLRU(_l1Cache);
        }
        
        _l1Cache[key] = CacheEntry(
          value: value,
          createdAt: DateTime.now(),
          lastAccessed: DateTime.now(),
          ttl: _defaultTtl,
        );
      }
      
      void _putL2Cache(String key, List<dynamic> results, Duration executionTime, Duration ttl) {
        if (_l2Cache.length >= _maxL2Size) {
          _evictLRU(_l2Cache);
        }
        
        _l2Cache[key] = QueryCacheEntry(
          results: List.from(results),
          createdAt: DateTime.now(),
          lastAccessed: DateTime.now(),
          ttl: ttl,
          executionTime: executionTime,
          hitCount: 0,
        );
      }
      
      void _putL3Cache(String key, Map<String, dynamic> result, Duration computeTime, Duration ttl) {
        if (_l3Cache.length >= _maxL3Size) {
          _evictLRU(_l3Cache);
        }
        
        _l3Cache[key] = AggregationCacheEntry(
          result: Map.from(result),
          createdAt: DateTime.now(),
          lastAccessed: DateTime.now(),
          ttl: ttl,
          computeTime: computeTime,
          hitCount: 0,
        );
      }
      
      void _evictLRU<T extends CacheEntryBase>(Map<String, T> cache) {
        if (cache.isEmpty) return;
        
        String? oldestKey;
        DateTime? oldestTime;
        
        for (final entry in cache.entries) {
          if (oldestTime == null || entry.value.lastAccessed.isBefore(oldestTime)) {
            oldestKey = entry.key;
            oldestTime = entry.value.lastAccessed;
          }
        }
        
        if (oldestKey != null) {
          cache.remove(oldestKey);
        }
      }
      
      void _evictExpiredEntries() {
        final now = DateTime.now();
        
        _l1Cache.removeWhere((_, entry) => entry.isExpired);
        _l2Cache.removeWhere((_, entry) => entry.isExpired);
        _l3Cache.removeWhere((_, entry) => entry.isExpired);
      }
      
      void _evictLeastRecentlyUsed() {
        while (_l1Cache.length > _maxL1Size) {
          _evictLRU(_l1Cache);
        }
        
        while (_l2Cache.length > _maxL2Size) {
          _evictLRU(_l2Cache);
        }
        
        while (_l3Cache.length > _maxL3Size) {
          _evictLRU(_l3Cache);
        }
      }
      
      CacheLevelStats _getCacheStats<T extends CacheEntryBase>(
        Map<String, T> cache, 
        int maxSize,
      ) {
        final totalHits = cache.values
            .where((entry) => entry is QueryCacheEntry)
            .cast<QueryCacheEntry>()
            .fold<int>(0, (sum, entry) => sum + entry.hitCount);
        
        final totalRequests = cache.length + totalHits;
        final hitRate = totalRequests > 0 ? totalHits / totalRequests : 0.0;
        
        return CacheLevelStats(
          size: cache.length,
          maxSize: maxSize,
          hitRate: hitRate,
          memoryUsage: _estimateMemoryUsage(cache),
        );
      }
      
      int _estimateMemoryUsage<T>(Map<String, T> cache) {
        // Simplified memory estimation
        return cache.length * 1024; // 1KB per entry estimate
      }
    }
    
    // Cache entry classes
    
    abstract class CacheEntryBase {
      final DateTime createdAt;
      DateTime lastAccessed;
      final Duration ttl;
      
      CacheEntryBase({
        required this.createdAt,
        required this.lastAccessed,
        required this.ttl,
      });
      
      bool get isExpired => DateTime.now().isAfter(createdAt.add(ttl));
    }
    
    class CacheEntry extends CacheEntryBase {
      final dynamic value;
      
      CacheEntry({
        required this.value,
        required DateTime createdAt,
        required DateTime lastAccessed,
        required Duration ttl,
      }) : super(
        createdAt: createdAt,
        lastAccessed: lastAccessed,
        ttl: ttl,
      );
    }
    
    class QueryCacheEntry extends CacheEntryBase {
      final List<dynamic> results;
      final Duration executionTime;
      int hitCount;
      
      QueryCacheEntry({
        required this.results,
        required DateTime createdAt,
        required DateTime lastAccessed,
        required Duration ttl,
        required this.executionTime,
        required this.hitCount,
      }) : super(
        createdAt: createdAt,
        lastAccessed: lastAccessed,
        ttl: ttl,
      );
    }
    
    class AggregationCacheEntry extends CacheEntryBase {
      final Map<String, dynamic> result;
      final Duration computeTime;
      int hitCount;
      
      AggregationCacheEntry({
        required this.result,
        required DateTime createdAt,
        required DateTime lastAccessed,
        required Duration ttl,
        required this.computeTime,
        required this.hitCount,
      }) : super(
        createdAt: createdAt,
        lastAccessed: lastAccessed,
        ttl: ttl,
      );
    }
    
    // Statistics classes
    
    class CacheStatistics {
      final CacheLevelStats l1Stats;
      final CacheLevelStats l2Stats;
      final CacheLevelStats l3Stats;
      
      CacheStatistics({
        required this.l1Stats,
        required this.l2Stats,
        required this.l3Stats,
      });
      
      double get overallHitRate {
        final totalHits = l1Stats.hitRate + l2Stats.hitRate + l3Stats.hitRate;
        return totalHits / 3;
      }
      
      int get totalMemoryUsage {
        return l1Stats.memoryUsage + l2Stats.memoryUsage + l3Stats.memoryUsage;
      }
    }
    
    class CacheLevelStats {
      final int size;
      final int maxSize;
      final double hitRate;
      final int memoryUsage;
      
      CacheLevelStats({
        required this.size,
        required this.maxSize,
        required this.hitRate,
        required this.memoryUsage,
      });
      
      double get utilizationRate => maxSize > 0 ? size / maxSize : 0.0;
    }
    

    Smart Cache Warming and Preloading

    class SmartCacheWarmer {
      final VektagrafDatabase database;
      final AdvancedCacheManager cacheManager;
      
      SmartCacheWarmer(this.database, this.cacheManager);
      
      /// Analyzes query patterns and preloads frequently accessed data
      Future<void> warmCache() async {
        print('=== Smart Cache Warming ===');
        
        // Analyze historical query patterns
        final queryPatterns = await _analyzeQueryPatterns();
        
        // Preload frequently accessed objects
        await _preloadFrequentObjects(queryPatterns);
        
        // Precompute common aggregations
        await _precomputeAggregations();
        
        // Warm vector search caches
        await _warmVectorSearchCache();
        
        print('Cache warming completed');
      }
      
      Future<List<QueryPattern>> _analyzeQueryPatterns() async {
        print('\n1. Analyzing query patterns...');
        
        // In a real implementation, this would analyze query logs
        // For demonstration, we'll simulate common patterns
        return [
          QueryPattern(
            type: 'property_filter',
            frequency: 150,
            avgLatency: Duration(milliseconds: 25),
            parameters: {'property': 'isActive', 'value': true},
          ),
          QueryPattern(
            type: 'range_query',
            frequency: 100,
            avgLatency: Duration(milliseconds: 45),
            parameters: {'property': 'age', 'min': 25, 'max': 35},
          ),
          QueryPattern(
            type: 'sorted_query',
            frequency: 80,
            avgLatency: Duration(milliseconds: 60),
            parameters: {'property': 'followerCount', 'descending': true, 'limit': 10},
          ),
          QueryPattern(
            type: 'vector_search',
            frequency: 200,
            avgLatency: Duration(milliseconds: 100),
            parameters: {'dimensions': 384, 'limit': 20},
          ),
        ];
      }
      
      Future<void> _preloadFrequentObjects(List<QueryPattern> patterns) async {
        print('\n2. Preloading frequently accessed objects...');
        
        final users = await database.objects<User>();
        
        // Preload active users (most frequently queried)
        final activeUsersPattern = patterns.firstWhere(
          (p) => p.type == 'property_filter' && p.parameters['property'] == 'isActive',
          orElse: () => null,
        );
        
        if (activeUsersPattern != null && activeUsersPattern.frequency > 100) {
          final activeUsers = await cacheManager.cachedQuery(
            'active_users',
            () => users.whereProperty('isActive', true).toList(),
            ttl: Duration(hours: 1),
          );
          
          print('Preloaded ${activeUsers.length} active users');
          
          // Preload individual user objects
          for (final user in activeUsers.take(100)) { // Top 100 most likely to be accessed
            final userId = users.idOf(user);
            if (userId != null) {
              await cacheManager.getObject<User>(userId);
            }
          }
        }
        
        // Preload users in popular age ranges
        final ageRangePattern = patterns.firstWhere(
          (p) => p.type == 'range_query' && p.parameters['property'] == 'age',
          orElse: () => null,
        );
        
        if (ageRangePattern != null && ageRangePattern.frequency > 50) {
          final youngUsers = await cacheManager.cachedQuery(
            'young_users_25_35',
            () => users.wherePropertyRange<int>('age', 25, 35).toList(),
            ttl: Duration(hours: 2),
          );
          
          print('Preloaded ${youngUsers.length} users in age range 25-35');
        }
      }
      
      Future<void> _precomputeAggregations() async {
        print('\n3. Precomputing common aggregations...');
        
        // User statistics by city
        await cacheManager.cachedAggregation(
          'user_stats_by_city',
          () async {
            final users = await database.objects<User>();
            final userList = await users.toList();
            
            final cityStats = <String, Map<String, dynamic>>{};
            
            for (final user in userList) {
              final city = user.city;
              if (!cityStats.containsKey(city)) {
                cityStats[city] = {
                  'count': 0,
                  'avgAge': 0.0,
                  'avgFollowers': 0.0,
                  'activeCount': 0,
                };
              }
              
              final stats = cityStats[city]!;
              stats['count'] = (stats['count'] as int) + 1;
              stats['avgAge'] = ((stats['avgAge'] as double) * (stats['count'] as int - 1) + user.age) / (stats['count'] as int);
              stats['avgFollowers'] = ((stats['avgFollowers'] as double) * (stats['count'] as int - 1) + user.followerCount) / (stats['count'] as int);
              
              if (user.isActive) {
                stats['activeCount'] = (stats['activeCount'] as int) + 1;
              }
            }
            
            return {'cityStats': cityStats};
          },
          ttl: Duration(hours: 6),
        );
        
        // Daily user registration trends
        await cacheManager.cachedAggregation(
          'daily_registration_trends',
          () async {
            final users = await database.objects<User>();
            final userList = await users.toList();
            
            final dailyStats = <String, int>{};
            
            for (final user in userList) {
              final dateKey = '${user.joinDate.year}-${user.joinDate.month.toString().padLeft(2, '0')}-${user.joinDate.day.toString().padLeft(2, '0')}';
              dailyStats[dateKey] = (dailyStats[dateKey] ?? 0) + 1;
            }
            
            return {'dailyRegistrations': dailyStats};
          },
          ttl: Duration(hours: 12),
        );
        
        print('Precomputed aggregations for user statistics and trends');
      }
      
      Future<void> _warmVectorSearchCache() async {
        print('\n4. Warming vector search cache...');
        
        final documentVectors = database.vectorSpace('documents', 384);
        
        // Generate representative query vectors for common search patterns
        final commonQueryVectors = [
          _generateCentroidVector('tech'),
          _generateCentroidVector('science'),
          _generateCentroidVector('business'),
          _generateCentroidVector('health'),
        ];
        
        // Warm cache with common searches
        for (int i = 0; i < commonQueryVectors.length; i++) {
          final queryVector = commonQueryVectors[i];
          final category = ['tech', 'science', 'business', 'health'][i];
          
          await cacheManager.cachedQuery(
            'vector_search_$category',
            () => documentVectors.similaritySearch(queryVector, 20),
            ttl: Duration(minutes: 30),
          );
        }
        
        print('Warmed vector search cache with ${commonQueryVectors.length} common query patterns');
      }
      
      List<double> _generateCentroidVector(String category) {
        // Simulate generating a centroid vector for a category
        // In practice, this would be computed from actual data
        final random = Random(category.hashCode);
        return List.generate(384, (_) => random.nextGaussian());
      }
    }
    
    class QueryPattern {
      final String type;
      final int frequency;
      final Duration avgLatency;
      final Map<String, dynamic> parameters;
      
      QueryPattern({
        required this.type,
        required this.frequency,
        required this.avgLatency,
        required this.parameters,
      });
    }
    ```### Perf
    ormance Monitoring and Analytics
    
    #### Comprehensive Performance Monitoring
    
    ```dart
    class PerformanceMonitor {
      final VektagrafDatabase database;
      final SystemMetricsCollector metricsCollector;
      
      PerformanceMonitor(this.database) 
          : metricsCollector = SystemMetricsCollector(database);
      
      /// Starts comprehensive performance monitoring
      void startMonitoring() {
        print('=== Starting Performance Monitoring ===');
        
        // Start metrics collection
        metricsCollector.start(flushInterval: Duration(seconds: 30));
        
        // Set up periodic performance analysis
        Timer.periodic(Duration(minutes: 5), (_) => _analyzePerformance());
        
        // Set up real-time alerting
        Timer.periodic(Duration(seconds: 10), (_) => _checkPerformanceAlerts());
        
        print('Performance monitoring started');
      }
      
      /// Records and analyzes a database operation
      Future<T> monitorOperation<T>(
        String operationName,
        Future<T> Function() operation, {
        Map<String, String>? labels,
      }) async {
        final stopwatch = Stopwatch()..start();
        
        try {
          final result = await operation();
          stopwatch.stop();
          
          // Record successful operation
          await metricsCollector.recordDatabaseOperation(
            operationName,
            stopwatch.elapsed,
            success: true,
          );
          
          // Record custom metrics
          if (labels != null) {
            metricsCollector.recordHistogram(
              'custom_operation_duration',
              stopwatch.elapsed.inMicroseconds / 1000000.0,
              labels: {'operation': operationName, ...labels},
            );
          }
          
          return result;
          
        } catch (e) {
          stopwatch.stop();
          
          // Record failed operation
          await metricsCollector.recordDatabaseOperation(
            operationName,
            stopwatch.elapsed,
            success: false,
          );
          
          rethrow;
        }
      }
      
      /// Gets comprehensive performance report
      Future<PerformanceReport> getPerformanceReport({
        Duration? timeWindow,
      }) async {
        final endTime = DateTime.now();
        final startTime = timeWindow != null 
            ? endTime.subtract(timeWindow)
            : endTime.subtract(Duration(hours: 1));
        
        // Query database operation metrics
        final dbMetrics = await metricsCollector.queryMetrics(
          name: 'vektagraf_database_operations_total',
          startTime: startTime,
          endTime: endTime,
        );
        
        // Query query performance metrics
        final queryMetrics = await metricsCollector.queryMetrics(
          name: 'vektagraf_query_duration_seconds',
          startTime: startTime,
          endTime: endTime,
        );
        
        // Query vector operation metrics
        final vectorMetrics = await metricsCollector.queryMetrics(
          name: 'vektagraf_vector_operations_total',
          startTime: startTime,
          endTime: endTime,
        );
        
        // Query memory usage metrics
        final memoryMetrics = await metricsCollector.queryMetrics(
          name: 'vektagraf_memory_usage_bytes',
          startTime: startTime,
          endTime: endTime,
        );
        
        return PerformanceReport(
          timeWindow: timeWindow ?? Duration(hours: 1),
          databaseOperations: _analyzeOperationMetrics(dbMetrics),
          queryPerformance: _analyzeQueryMetrics(queryMetrics),
          vectorOperations: _analyzeVectorMetrics(vectorMetrics),
          memoryUsage: _analyzeMemoryMetrics(memoryMetrics),
          generatedAt: DateTime.now(),
        );
      }
      
      /// Analyzes current performance and identifies issues
      Future<void> _analyzePerformance() async {
        final report = await getPerformanceReport(timeWindow: Duration(minutes: 5));
        
        // Check for performance issues
        final issues = <PerformanceIssue>[];
        
        // Check query latency
        if (report.queryPerformance.averageLatency.inMilliseconds > 100) {
          issues.add(PerformanceIssue(
            type: 'high_query_latency',
            severity: 'warning',
            description: 'Average query latency is ${report.queryPerformance.averageLatency.inMilliseconds}ms',
            recommendation: 'Consider adding indexes or optimizing query patterns',
          ));
        }
        
        // Check error rate
        if (report.databaseOperations.errorRate > 0.05) {
          issues.add(PerformanceIssue(
            type: 'high_error_rate',
            severity: 'critical',
            description: 'Error rate is ${(report.databaseOperations.errorRate * 100).toStringAsFixed(1)}%',
            recommendation: 'Investigate error causes and implement proper error handling',
          ));
        }
        
        // Check memory usage
        if (report.memoryUsage.currentUsage > report.memoryUsage.maxUsage * 0.9) {
          issues.add(PerformanceIssue(
            type: 'high_memory_usage',
            severity: 'warning',
            description: 'Memory usage is at ${(report.memoryUsage.currentUsage / report.memoryUsage.maxUsage * 100).toStringAsFixed(1)}% of capacity',
            recommendation: 'Consider increasing memory allocation or optimizing data structures',
          ));
        }
        
        // Log issues if found
        if (issues.isNotEmpty) {
          print('\nāš ļø  Performance Issues Detected:');
          for (final issue in issues) {
            print('  ${issue.severity.toUpperCase()}: ${issue.description}');
            print('    Recommendation: ${issue.recommendation}');
          }
        }
      }
      
      /// Checks for real-time performance alerts
      Future<void> _checkPerformanceAlerts() async {
        // Get recent metrics (last 30 seconds)
        final recentMetrics = await metricsCollector.queryMetrics(
          startTime: DateTime.now().subtract(Duration(seconds: 30)),
          endTime: DateTime.now(),
        );
        
        // Check for immediate issues
        for (final metric in recentMetrics) {
          if (metric.name == 'vektagraf_query_duration_seconds' && metric.value > 1.0) {
            print('🚨 ALERT: Slow query detected (${(metric.value * 1000).toStringAsFixed(0)}ms)');
          }
          
          if (metric.name == 'vektagraf_database_operations_total' && 
              metric.labels['status'] == 'error') {
            print('🚨 ALERT: Database operation error detected');
          }
        }
      }
      
      // Analysis helper methods
      
      DatabaseOperationMetrics _analyzeOperationMetrics(List<SystemMetric> metrics) {
        if (metrics.isEmpty) {
          return DatabaseOperationMetrics.empty();
        }
        
        final successMetrics = metrics.where((m) => m.labels['status'] == 'success');
        final errorMetrics = metrics.where((m) => m.labels['status'] == 'error');
        
        final totalOperations = metrics.length;
        final successfulOperations = successMetrics.length;
        final errorRate = totalOperations > 0 ? errorMetrics.length / totalOperations : 0.0;
        
        return DatabaseOperationMetrics(
          totalOperations: totalOperations,
          successfulOperations: successfulOperations,
          errorRate: errorRate,
          operationsPerSecond: totalOperations / 300.0, // 5 minute window
        );
      }
      
      QueryPerformanceMetrics _analyzeQueryMetrics(List<SystemMetric> metrics) {
        if (metrics.isEmpty) {
          return QueryPerformanceMetrics.empty();
        }
        
        final latencies = metrics.map((m) => m.value).toList()..sort();
        final avgLatency = latencies.reduce((a, b) => a + b) / latencies.length;
        
        return QueryPerformanceMetrics(
          totalQueries: metrics.length,
          averageLatency: Duration(microseconds: (avgLatency * 1000000).round()),
          p50Latency: Duration(microseconds: (latencies[latencies.length ~/ 2] * 1000000).round()),
          p95Latency: Duration(microseconds: (latencies[(latencies.length * 0.95).floor()] * 1000000).round()),
          p99Latency: Duration(microseconds: (latencies[(latencies.length * 0.99).floor()] * 1000000).round()),
        );
      }
      
      VectorOperationMetrics _analyzeVectorMetrics(List<SystemMetric> metrics) {
        if (metrics.isEmpty) {
          return VectorOperationMetrics.empty();
        }
        
        final operationCounts = <String, int>{};
        for (final metric in metrics) {
          final operation = metric.labels['operation'] ?? 'unknown';
          operationCounts[operation] = (operationCounts[operation] ?? 0) + metric.value.round();
        }
        
        return VectorOperationMetrics(
          totalOperations: metrics.fold<int>(0, (sum, m) => sum + m.value.round()),
          operationsByType: operationCounts,
          averageVectorCount: metrics.isNotEmpty 
              ? metrics.map((m) => m.value).reduce((a, b) => a + b) / metrics.length 
              : 0.0,
        );
      }
      
      MemoryUsageMetrics _analyzeMemoryMetrics(List<SystemMetric> metrics) {
        if (metrics.isEmpty) {
          return MemoryUsageMetrics.empty();
        }
        
        final usageValues = metrics.map((m) => m.value).toList();
        final currentUsage = usageValues.last;
        final maxUsage = usageValues.reduce((a, b) => a > b ? a : b);
        final avgUsage = usageValues.reduce((a, b) => a + b) / usageValues.length;
        
        return MemoryUsageMetrics(
          currentUsage: currentUsage,
          maxUsage: maxUsage,
          averageUsage: avgUsage,
          peakUsage: maxUsage,
        );
      }
    }
    
    // Performance report classes
    
    class PerformanceReport {
      final Duration timeWindow;
      final DatabaseOperationMetrics databaseOperations;
      final QueryPerformanceMetrics queryPerformance;
      final VectorOperationMetrics vectorOperations;
      final MemoryUsageMetrics memoryUsage;
      final DateTime generatedAt;
      
      PerformanceReport({
        required this.timeWindow,
        required this.databaseOperations,
        required this.queryPerformance,
        required this.vectorOperations,
        required this.memoryUsage,
        required this.generatedAt,
      });
      
      void printSummary() {
        print('\n=== Performance Report (${timeWindow.inMinutes} minutes) ===');
        print('Generated at: $generatedAt');
        
        print('\nDatabase Operations:');
        print('  Total: ${databaseOperations.totalOperations}');
        print('  Success rate: ${((1 - databaseOperations.errorRate) * 100).toStringAsFixed(1)}%');
        print('  Ops/sec: ${databaseOperations.operationsPerSecond.toStringAsFixed(1)}');
        
        print('\nQuery Performance:');
        print('  Total queries: ${queryPerformance.totalQueries}');
        print('  Average latency: ${queryPerformance.averageLatency.inMilliseconds}ms');
        print('  P95 latency: ${queryPerformance.p95Latency.inMilliseconds}ms');
        print('  P99 latency: ${queryPerformance.p99Latency.inMilliseconds}ms');
        
        print('\nVector Operations:');
        print('  Total operations: ${vectorOperations.totalOperations}');
        print('  Average vector count: ${vectorOperations.averageVectorCount.toStringAsFixed(0)}');
        
        print('\nMemory Usage:');
        print('  Current: ${(memoryUsage.currentUsage / 1024 / 1024).toStringAsFixed(1)} MB');
        print('  Peak: ${(memoryUsage.peakUsage / 1024 / 1024).toStringAsFixed(1)} MB');
        print('  Average: ${(memoryUsage.averageUsage / 1024 / 1024).toStringAsFixed(1)} MB');
      }
    }
    
    class DatabaseOperationMetrics {
      final int totalOperations;
      final int successfulOperations;
      final double errorRate;
      final double operationsPerSecond;
      
      DatabaseOperationMetrics({
        required this.totalOperations,
        required this.successfulOperations,
        required this.errorRate,
        required this.operationsPerSecond,
      });
      
      factory DatabaseOperationMetrics.empty() => DatabaseOperationMetrics(
        totalOperations: 0,
        successfulOperations: 0,
        errorRate: 0.0,
        operationsPerSecond: 0.0,
      );
    }
    
    class QueryPerformanceMetrics {
      final int totalQueries;
      final Duration averageLatency;
      final Duration p50Latency;
      final Duration p95Latency;
      final Duration p99Latency;
      
      QueryPerformanceMetrics({
        required this.totalQueries,
        required this.averageLatency,
        required this.p50Latency,
        required this.p95Latency,
        required this.p99Latency,
      });
      
      factory QueryPerformanceMetrics.empty() => QueryPerformanceMetrics(
        totalQueries: 0,
        averageLatency: Duration.zero,
        p50Latency: Duration.zero,
        p95Latency: Duration.zero,
        p99Latency: Duration.zero,
      );
    }
    
    class VectorOperationMetrics {
      final int totalOperations;
      final Map<String, int> operationsByType;
      final double averageVectorCount;
      
      VectorOperationMetrics({
        required this.totalOperations,
        required this.operationsByType,
        required this.averageVectorCount,
      });
      
      factory VectorOperationMetrics.empty() => VectorOperationMetrics(
        totalOperations: 0,
        operationsByType: {},
        averageVectorCount: 0.0,
      );
    }
    
    class MemoryUsageMetrics {
      final double currentUsage;
      final double maxUsage;
      final double averageUsage;
      final double peakUsage;
      
      MemoryUsageMetrics({
        required this.currentUsage,
        required this.maxUsage,
        required this.averageUsage,
        required this.peakUsage,
      });
      
      factory MemoryUsageMetrics.empty() => MemoryUsageMetrics(
        currentUsage: 0.0,
        maxUsage: 0.0,
        averageUsage: 0.0,
        peakUsage: 0.0,
      );
    }
    
    class PerformanceIssue {
      final String type;
      final String severity;
      final String description;
      final String recommendation;
      
      PerformanceIssue({
        required this.type,
        required this.severity,
        required this.description,
        required this.recommendation,
      });
    }
    

    Automated Performance Tuning

    class AutoPerformanceTuner {
      final VektagrafDatabase database;
      final PerformanceMonitor performanceMonitor;
      
      AutoPerformanceTuner(this.database, this.performanceMonitor);
      
      /// Runs automated performance tuning based on current metrics
      Future<void> runAutoTuning() async {
        print('=== Automated Performance Tuning ===');
        
        // Get current performance baseline
        final baseline = await performanceMonitor.getPerformanceReport(
          timeWindow: Duration(minutes: 15),
        );
        
        print('Current performance baseline:');
        baseline.printSummary();
        
        // Identify tuning opportunities
        final opportunities = await _identifyTuningOpportunities(baseline);
        
        // Apply tuning strategies
        for (final opportunity in opportunities) {
          await _applyTuningStrategy(opportunity);
        }
        
        // Measure improvement
        await _measureImprovement(baseline);
      }
      
      Future<List<TuningOpportunity>> _identifyTuningOpportunities(
        PerformanceReport baseline,
      ) async {
        final opportunities = <TuningOpportunity>[];
        
        // Check query performance
        if (baseline.queryPerformance.averageLatency.inMilliseconds > 50) {
          opportunities.add(TuningOpportunity(
            type: 'query_optimization',
            priority: 'high',
            description: 'High query latency detected',
            strategy: 'optimize_indexes',
            expectedImprovement: 0.3,
          ));
        }
        
        // Check memory usage
        if (baseline.memoryUsage.currentUsage > baseline.memoryUsage.maxUsage * 0.8) {
          opportunities.add(TuningOpportunity(
            type: 'memory_optimization',
            priority: 'medium',
            description: 'High memory usage detected',
            strategy: 'optimize_caching',
            expectedImprovement: 0.2,
          ));
        }
        
        // Check vector operations
        if (baseline.vectorOperations.totalOperations > 1000) {
          opportunities.add(TuningOpportunity(
            type: 'vector_optimization',
            priority: 'medium',
            description: 'High vector operation volume',
            strategy: 'optimize_vector_parameters',
            expectedImprovement: 0.25,
          ));
        }
        
        return opportunities;
      }
      
      Future<void> _applyTuningStrategy(TuningOpportunity opportunity) async {
        print('\nApplying tuning strategy: ${opportunity.strategy}');
        
        switch (opportunity.strategy) {
          case 'optimize_indexes':
            await _optimizeIndexes();
            break;
          case 'optimize_caching':
            await _optimizeCaching();
            break;
          case 'optimize_vector_parameters':
            await _optimizeVectorParameters();
            break;
        }
      }
      
      Future<void> _optimizeIndexes() async {
        print('  - Analyzing and optimizing indexes...');
        
        final indexManager = IndexManager(database);
        await indexManager.analyzeAndOptimizeIndexes();
        
        print('  - Index optimization completed');
      }
      
      Future<void> _optimizeCaching() async {
        print('  - Optimizing caching strategies...');
        
        // Adjust cache sizes based on memory usage
        final config = database.config;
        if (config != null) {
          // In a real implementation, this would update cache configuration
          print('  - Adjusted cache sizes for optimal memory usage');
        }
        
        // Warm frequently accessed data
        final cacheManager = AdvancedCacheManager(database);
        final cacheWarmer = SmartCacheWarmer(database, cacheManager);
        await cacheWarmer.warmCache();
        
        print('  - Cache optimization completed');
      }
      
      Future<void> _optimizeVectorParameters() async {
        print('  - Optimizing vector search parameters...');
        
        final vectorOptimizer = VectorSearchOptimizer(database);
        await vectorOptimizer.optimizeVectorSpaces();
        
        print('  - Vector parameter optimization completed');
      }
      
      Future<void> _measureImprovement(PerformanceReport baseline) async {
        print('\n=== Measuring Performance Improvement ===');
        
        // Wait for changes to take effect
        await Future.delayed(Duration(seconds: 30));
        
        // Get new performance metrics
        final improved = await performanceMonitor.getPerformanceReport(
          timeWindow: Duration(minutes: 5),
        );
        
        // Calculate improvements
        final queryLatencyImprovement = _calculateImprovement(
          baseline.queryPerformance.averageLatency.inMilliseconds.toDouble(),
          improved.queryPerformance.averageLatency.inMilliseconds.toDouble(),
        );
        
        final memoryUsageImprovement = _calculateImprovement(
          baseline.memoryUsage.currentUsage,
          improved.memoryUsage.currentUsage,
        );
        
        final throughputImprovement = _calculateImprovement(
          baseline.databaseOperations.operationsPerSecond,
          improved.databaseOperations.operationsPerSecond,
          higherIsBetter: true,
        );
        
        print('Performance improvements:');
        print('  Query latency: ${queryLatencyImprovement.toStringAsFixed(1)}%');
        print('  Memory usage: ${memoryUsageImprovement.toStringAsFixed(1)}%');
        print('  Throughput: ${throughputImprovement.toStringAsFixed(1)}%');
        
        // Log tuning results
        await _logTuningResults({
          'query_latency_improvement': queryLatencyImprovement,
          'memory_usage_improvement': memoryUsageImprovement,
          'throughput_improvement': throughputImprovement,
        });
      }
      
      double _calculateImprovement(
        double baseline,
        double improved, {
        bool higherIsBetter = false,
      }) {
        if (baseline == 0) return 0.0;
        
        final change = higherIsBetter 
            ? (improved - baseline) / baseline
            : (baseline - improved) / baseline;
        
        return change * 100;
      }
      
      Future<void> _logTuningResults(Map<String, double> improvements) async {
        // In a real implementation, this would log to a monitoring system
        print('\nTuning results logged for historical analysis');
      }
    }
    
    class TuningOpportunity {
      final String type;
      final String priority;
      final String description;
      final String strategy;
      final double expectedImprovement;
      
      TuningOpportunity({
        required this.type,
        required this.priority,
        required this.description,
        required this.strategy,
        required this.expectedImprovement,
      });
    }
    ```## Be
    st Practices
    
    ### Query Design Patterns
    
    #### Efficient Query Construction
    
    ```dart
    class QueryBestPractices {
      /// Demonstrates optimal query patterns for different scenarios
      static Future<void> demonstrateOptimalPatterns(VektagrafDatabase database) async {
        final users = await database.objects<User>();
        final posts = await database.objects<Post>();
        
        print('=== Query Best Practices ===');
        
        // āœ… Good: Use property queries for indexed fields
        final activeUsers = await users.whereProperty('isActive', true);
        
        // āŒ Bad: Use predicates for simple property checks
        // final activeUsers = users.where((u) => u.isActive);
        
        // āœ… Good: Chain operations efficiently (filters first, then sorts/limits)
        final topActiveUsers = await users
            .whereProperty('isActive', true)        // Filter first (uses index)
            .wherePropertyRange('age', 25, 65)      // Further filter (uses index)
            .orderByProperty('followerCount', descending: true)  // Sort reduced set
            .take(10);                              // Limit final results
        
        // āŒ Bad: Sort everything first, then filter
        // final topActiveUsers = await users
        //     .orderByProperty('followerCount', descending: true)  // Sorts all users
        //     .whereProperty('isActive', true)                     // Filters sorted results
        //     .take(10);
        
        // āœ… Good: Use batch operations for multiple saves
        await users.saveAllInTransaction(newUsers);
        
        // āŒ Bad: Individual saves in separate transactions
        // for (final user in newUsers) {
        //   await users.save(user);
        // }
        
        // āœ… Good: Use specific property queries
        final techPosts = await posts.whereProperty('category', 'tech');
        
        // āœ… Good: Use range queries for numerical/date ranges
        final recentPosts = await posts.wherePropertyRange<DateTime>(
          'createdAt',
          DateTime.now().subtract(Duration(days: 7)),
          DateTime.now(),
        );
        
        print('Demonstrated optimal query patterns');
      }
    }
    

    Memory Management Strategies

    class MemoryOptimization {
      /// Implements memory-efficient data processing patterns
      static Future<void> demonstrateMemoryPatterns(VektagrafDatabase database) async {
        print('=== Memory Optimization Patterns ===');
        
        // āœ… Good: Process large datasets in chunks
        await _processLargeDatasetInChunks(database);
        
        // āœ… Good: Use streaming for large result sets
        await _useStreamingForLargeResults(database);
        
        // āœ… Good: Implement proper resource cleanup
        await _demonstrateResourceCleanup(database);
      }
      
      static Future<void> _processLargeDatasetInChunks(VektagrafDatabase database) async {
        final users = await database.objects<User>();
        
        const chunkSize = 1000;
        int offset = 0;
        
        while (true) {
          // Process data in manageable chunks
          final chunk = await users
              .skip(offset)
              .take(chunkSize)
              .toList();
          
          if (chunk.isEmpty) break;
          
          // Process chunk
          await _processUserChunk(chunk);
          
          offset += chunkSize;
          
          // Optional: Add small delay to prevent overwhelming the system
          await Future.delayed(Duration(milliseconds: 10));
        }
        
        print('Processed large dataset in chunks of $chunkSize');
      }
      
      static Future<void> _useStreamingForLargeResults(VektagrafDatabase database) async {
        final users = await database.objects<User>();
        
        // Use streaming to avoid loading all results into memory
        await for (final user in users.stream) {
          // Process each user individually
          await _processUser(user);
          
          // Memory is automatically managed as items are processed
        }
        
        print('Used streaming for memory-efficient processing');
      }
      
      static Future<void> _demonstrateResourceCleanup(VektagrafDatabase database) async {
        VektagrafVectorSpace? vectorSpace;
        
        try {
          // Create resources
          vectorSpace = database.vectorSpace('temp_space', 384);
          
          // Use resources
          await vectorSpace.addVector([1, 2, 3, /* ... */]);
          
        } finally {
          // Always clean up resources
          if (vectorSpace != null) {
            await vectorSpace.close();
          }
        }
        
        print('Demonstrated proper resource cleanup');
      }
      
      static Future<void> _processUserChunk(List<User> chunk) async {
        // Simulate processing
        await Future.delayed(Duration(milliseconds: 1));
      }
      
      static Future<void> _processUser(User user) async {
        // Simulate processing
        await Future.delayed(Duration(microseconds: 100));
      }
    }
    

    Performance Testing Framework

    class PerformanceTestSuite {
      final VektagrafDatabase database;
      
      PerformanceTestSuite(this.database);
      
      /// Runs comprehensive performance tests
      Future<void> runPerformanceTests() async {
        print('=== Performance Test Suite ===');
        
        // Test query performance
        await _testQueryPerformance();
        
        // Test vector search performance
        await _testVectorSearchPerformance();
        
        // Test concurrent operations
        await _testConcurrentOperations();
        
        // Test memory usage patterns
        await _testMemoryUsage();
        
        // Test scalability
        await _testScalability();
      }
      
      Future<void> _testQueryPerformance() async {
        print('\n1. Testing query performance...');
        
        final users = await database.objects<User>();
        
        // Test different query types
        final queryTests = [
          ('Property Query', () => users.whereProperty('isActive', true)),
          ('Range Query', () => users.wherePropertyRange<int>('age', 25, 35)),
          ('Sorted Query', () => users.orderByProperty<int>('followerCount', descending: true)),
          ('Complex Chain', () => users
              .whereProperty('isActive', true)
              .wherePropertyRange<int>('age', 25, 35)
              .orderByProperty<DateTime>('joinDate')
              .take(10)),
        ];
        
        for (final test in queryTests) {
          final testName = test.$1;
          final queryFunction = test.$2;
          
          final latencies = <Duration>[];
          
          // Warm up
          for (int i = 0; i < 3; i++) {
            await queryFunction();
          }
          
          // Measure performance
          for (int i = 0; i < 10; i++) {
            final stopwatch = Stopwatch()..start();
            await queryFunction();
            stopwatch.stop();
            latencies.add(stopwatch.elapsed);
          }
          
          final avgLatency = latencies.fold<int>(0, (sum, d) => sum + d.inMicroseconds) / latencies.length;
          print('  $testName: ${(avgLatency / 1000).toStringAsFixed(2)}ms avg');
        }
      }
      
      Future<void> _testVectorSearchPerformance() async {
        print('\n2. Testing vector search performance...');
        
        final vectorSpace = database.vectorSpace('test_vectors', 384);
        final queryVector = List.generate(384, (i) => Random().nextDouble());
        
        // Test different search parameters
        final searchTests = [
          ('Small Result Set', 5),
          ('Medium Result Set', 20),
          ('Large Result Set', 100),
        ];
        
        for (final test in searchTests) {
          final testName = test.$1;
          final limit = test.$2;
          
          final latencies = <Duration>[];
          
          // Measure performance
          for (int i = 0; i < 5; i++) {
            final stopwatch = Stopwatch()..start();
            await vectorSpace.similaritySearch(queryVector, limit);
            stopwatch.stop();
            latencies.add(stopwatch.elapsed);
          }
          
          final avgLatency = latencies.fold<int>(0, (sum, d) => sum + d.inMicroseconds) / latencies.length;
          print('  $testName (limit $limit): ${(avgLatency / 1000).toStringAsFixed(2)}ms avg');
        }
      }
      
      Future<void> _testConcurrentOperations() async {
        print('\n3. Testing concurrent operations...');
        
        final users = await database.objects<User>();
        
        // Test concurrent reads
        final readStopwatch = Stopwatch()..start();
        final readFutures = List.generate(10, (_) => 
            users.whereProperty('isActive', true).toList());
        await Future.wait(readFutures);
        readStopwatch.stop();
        
        print('  Concurrent reads (10x): ${readStopwatch.elapsedMilliseconds}ms total');
        
        // Test concurrent writes
        final writeStopwatch = Stopwatch()..start();
        final writeFutures = List.generate(5, (i) => 
            users.save(User(
              id: VektagrafId.generate(),
              username: 'concurrent_user_$i',
              email: 'concurrent$i@test.com',
              age: 25,
              city: 'Test City',
              joinDate: DateTime.now(),
              isActive: true,
              followerCount: 0,
            )));
        await Future.wait(writeFutures);
        writeStopwatch.stop();
        
        print('  Concurrent writes (5x): ${writeStopwatch.elapsedMilliseconds}ms total');
      }
      
      Future<void> _testMemoryUsage() async {
        print('\n4. Testing memory usage patterns...');
        
        // Simulate memory-intensive operations
        final users = await database.objects<User>();
        
        // Test large result set handling
        final largeResultSet = await users.take(10000).toList();
        print('  Large result set (10k items): ${largeResultSet.length} loaded');
        
        // Test streaming vs. loading all
        final streamStopwatch = Stopwatch()..start();
        int streamCount = 0;
        await for (final user in users.take(1000).stream) {
          streamCount++;
        }
        streamStopwatch.stop();
        
        final loadAllStopwatch = Stopwatch()..start();
        final allUsers = await users.take(1000).toList();
        loadAllStopwatch.stop();
        
        print('  Streaming 1k items: ${streamStopwatch.elapsedMilliseconds}ms');
        print('  Loading 1k items: ${loadAllStopwatch.elapsedMilliseconds}ms');
      }
      
      Future<void> _testScalability() async {
        print('\n5. Testing scalability...');
        
        final users = await database.objects<User>();
        
        // Test performance with different data sizes
        final dataSizes = [100, 1000, 10000];
        
        for (final size in dataSizes) {
          final stopwatch = Stopwatch()..start();
          final results = await users.take(size).toList();
          stopwatch.stop();
          
          final throughput = size / (stopwatch.elapsedMicroseconds / 1000000);
          print('  $size items: ${stopwatch.elapsedMilliseconds}ms (${throughput.toStringAsFixed(0)} items/sec)');
        }
      }
    }
    

    Advanced Topics

    Custom Query Optimizers

    class CustomQueryOptimizer {
      /// Implements domain-specific query optimization strategies
      static Future<void> implementCustomOptimizations(VektagrafDatabase database) async {
        print('=== Custom Query Optimization ===');
        
        // Implement time-based query optimization
        await _implementTimeBasedOptimization(database);
        
        // Implement user behavior-based optimization
        await _implementBehaviorBasedOptimization(database);
        
        // Implement predictive caching
        await _implementPredictiveCaching(database);
      }
      
      static Future<void> _implementTimeBasedOptimization(VektagrafDatabase database) async {
        print('\n1. Time-based query optimization...');
        
        final posts = await database.objects<Post>();
        
        // Optimize queries based on time of day
        final hour = DateTime.now().hour;
        
        if (hour >= 9 && hour <= 17) {
          // Business hours: optimize for recent content
          final recentPosts = await posts
              .wherePropertyRange<DateTime>(
                'createdAt',
                DateTime.now().subtract(Duration(hours: 24)),
                DateTime.now(),
              )
              .orderByProperty<DateTime>('createdAt', descending: true)
              .take(50)
              .toList();
          
          print('  Optimized for recent content during business hours');
        } else {
          // Off hours: optimize for popular content
          final popularPosts = await posts
              .orderByProperty<int>('likeCount', descending: true)
              .take(50)
              .toList();
          
          print('  Optimized for popular content during off hours');
        }
      }
      
      static Future<void> _implementBehaviorBasedOptimization(VektagrafDatabase database) async {
        print('\n2. User behavior-based optimization...');
        
        // Analyze user query patterns and optimize accordingly
        final queryPatterns = await _analyzeUserQueryPatterns();
        
        for (final pattern in queryPatterns) {
          if (pattern.frequency > 100) {
            // Pre-execute frequently used queries
            await _preExecuteQuery(database, pattern);
          }
        }
        
        print('  Applied behavior-based optimizations for ${queryPatterns.length} patterns');
      }
      
      static Future<void> _implementPredictiveCaching(VektagrafDatabase database) async {
        print('\n3. Predictive caching...');
        
        // Predict future queries based on current patterns
        final predictions = await _predictFutureQueries();
        
        for (final prediction in predictions) {
          if (prediction.confidence > 0.8) {
            // Pre-cache predicted queries
            await _preCacheQuery(database, prediction);
          }
        }
        
        print('  Implemented predictive caching for ${predictions.length} predicted queries');
      }
      
      static Future<List<QueryPattern>> _analyzeUserQueryPatterns() async {
        // Simulate query pattern analysis
        return [
          QueryPattern(
            type: 'recent_posts',
            frequency: 150,
            avgLatency: Duration(milliseconds: 30),
            parameters: {'timeRange': '24h', 'limit': 20},
          ),
          QueryPattern(
            type: 'user_profile',
            frequency: 200,
            avgLatency: Duration(milliseconds: 15),
            parameters: {'includeStats': true},
          ),
        ];
      }
      
      static Future<void> _preExecuteQuery(VektagrafDatabase database, QueryPattern pattern) async {
        // Pre-execute and cache frequently used queries
        print('    Pre-executing ${pattern.type} (frequency: ${pattern.frequency})');
      }
      
      static Future<List<QueryPrediction>> _predictFutureQueries() async {
        // Simulate query prediction
        return [
          QueryPrediction(
            queryType: 'trending_content',
            confidence: 0.85,
            predictedTime: DateTime.now().add(Duration(minutes: 5)),
          ),
          QueryPrediction(
            queryType: 'user_recommendations',
            confidence: 0.92,
            predictedTime: DateTime.now().add(Duration(minutes: 10)),
          ),
        ];
      }
      
      static Future<void> _preCacheQuery(VektagrafDatabase database, QueryPrediction prediction) async {
        // Pre-cache predicted queries
        print('    Pre-caching ${prediction.queryType} (confidence: ${prediction.confidence})');
      }
    }
    
    class QueryPrediction {
      final String queryType;
      final double confidence;
      final DateTime predictedTime;
      
      QueryPrediction({
        required this.queryType,
        required this.confidence,
        required this.predictedTime,
      });
    }
    

    Reference

    Performance Configuration

    class VektagrafPerformanceConfig {
      // Query optimization settings
      final bool enableQueryOptimization;
      final bool enableQueryCache;
      final int maxCacheSize;
      final Duration defaultCacheTtl;
      
      // Indexing settings
      final bool enableAutoIndexing;
      final int indexThreshold;
      final int maxIndexes;
      
      // Memory management
      final int maxMemoryBytes;
      final double memoryPressureThreshold;
      final bool enableMemoryCompaction;
      
      // Concurrency settings
      final int maxConcurrentQueries;
      final int maxConcurrentTransactions;
      final Duration queryTimeout;
      
      // Vector search optimization
      final Map<String, VectorSpaceConfig> vectorSpaceConfigs;
      
      // Monitoring settings
      final bool enablePerformanceMonitoring;
      final Duration metricsCollectionInterval;
      final Duration performanceReportInterval;
      
      VektagrafPerformanceConfig({
        this.enableQueryOptimization = true,
        this.enableQueryCache = true,
        this.maxCacheSize = 1000,
        this.defaultCacheTtl = const Duration(minutes: 5),
        this.enableAutoIndexing = true,
        this.indexThreshold = 10,
        this.maxIndexes = 100,
        this.maxMemoryBytes = 1024 * 1024 * 1024, // 1GB
        this.memoryPressureThreshold = 0.8,
        this.enableMemoryCompaction = true,
        this.maxConcurrentQueries = 100,
        this.maxConcurrentTransactions = 50,
        this.queryTimeout = const Duration(seconds: 30),
        this.vectorSpaceConfigs = const {},
        this.enablePerformanceMonitoring = true,
        this.metricsCollectionInterval = const Duration(seconds: 30),
        this.performanceReportInterval = const Duration(minutes: 5),
      });
    }
    
    class VectorSpaceConfig {
      final String algorithm; // 'hnsw', 'ivfflat', 'memory'
      final Map<String, dynamic> parameters;
      final int memoryBudgetBytes;
      final double cpuBudget;
      
      VectorSpaceConfig({
        required this.algorithm,
        required this.parameters,
        required this.memoryBudgetBytes,
        required this.cpuBudget,
      });
    }
    

    Performance Metrics Reference

    Key Performance Indicators

    MetricDescriptionTarget Range
    Query LatencyAverage time to execute queries< 50ms
    ThroughputQueries processed per second> 1000 QPS
    Cache Hit RatePercentage of queries served from cache> 80%
    Memory UsageRAM consumption by database< 80% of available
    Index EfficiencyRatio of indexed vs. full-scan operations> 90%
    Error RatePercentage of failed operations< 1%

    Optimization Thresholds

    ComponentWarning ThresholdCritical Threshold
    Query Latency100ms500ms
    Memory Usage80%95%
    Cache Miss Rate30%50%
    Index Fragmentation20%40%
    Concurrent Connections80% of max95% of max

    Summary

    This chapter covered comprehensive query optimization and performance tuning strategies for Vektagraf. Key takeaways include:

    • Automatic Optimization: Built-in query optimizer with intelligent index management and operation reordering
    • Multi-Level Caching: L1 object cache, L2 query cache, and L3 aggregation cache for maximum performance
    • Vector Search Optimization: Algorithm-specific tuning for HNSW, IVFFlat, and memory-based vector spaces
    • Performance Monitoring: Real-time metrics collection with automated alerting and performance analysis
    • Memory Management: Efficient memory usage patterns and resource cleanup strategies
    • Automated Tuning: Self-optimizing system that adapts to usage patterns and performance requirements

    Next Steps

    • Chapter 11: Learn about multi-tenant architecture and resource isolation
    • Chapter 14: Explore advanced performance tuning and optimization techniques
    • Chapter 13: Implement comprehensive monitoring and observability