Skip to main content

Chapter 19: Troubleshooting and Maintenance

Overview

This chapter provides comprehensive guidance for troubleshooting common issues and maintaining Vektagraf applications in production environments. We'll cover systematic troubleshooting approaches, debugging techniques, diagnostic tools, maintenance procedures, health checks, and performance optimization strategies.

Learning Objectives

  • Master systematic troubleshooting approaches for Vektagraf applications
  • Use debugging techniques and diagnostic tools effectively
  • Implement comprehensive maintenance procedures and health checks
  • Optimize performance through systematic analysis and tuning

Prerequisites

  • Understanding of Vektagraf architecture and deployment patterns
  • Familiarity with monitoring and observability concepts
  • Knowledge of Kubernetes and container troubleshooting
  • Basic understanding of database performance tuning

Core Concepts

Troubleshooting Methodology

A systematic approach to troubleshooting Vektagraf issues:

graph TD
    A[Issue Reported] --> B[Gather Information]
    B --> C[Identify Symptoms]
    C --> D[Form Hypothesis]
    D --> E[Test Hypothesis]
    E --> F{Issue Resolved?}
    F -->|No| G[Refine Hypothesis]
    G --> E
    F -->|Yes| H[Document Solution]
    H --> I[Implement Prevention]

Issue Classification

// lib/troubleshooting/issue_classifier.dart
enum IssueCategory {
  performance,
  connectivity,
  security,
  data,
  configuration,
  infrastructure,
}

enum IssueSeverity {
  critical,  // System down, data loss
  high,      // Major functionality impacted
  medium,    // Minor functionality impacted
  low,       // Cosmetic or enhancement
}

class Issue {
  final String id;
  final String title;
  final String description;
  final IssueCategory category;
  final IssueSeverity severity;
  final DateTime reportedAt;
  final List<String> symptoms;
  final Map<String, dynamic> context;
  
  const Issue({
    required this.id,
    required this.title,
    required this.description,
    required this.category,
    required this.severity,
    required this.reportedAt,
    this.symptoms = const [],
    this.context = const {},
  });
}

class TroubleshootingGuide {
  static List<TroubleshootingStep> getStepsForIssue(Issue issue) {
    switch (issue.category) {
      case IssueCategory.performance:
        return _getPerformanceSteps(issue);
      case IssueCategory.connectivity:
        return _getConnectivitySteps(issue);
      case IssueCategory.security:
        return _getSecuritySteps(issue);
      case IssueCategory.data:
        return _getDataSteps(issue);
      case IssueCategory.configuration:
        return _getConfigurationSteps(issue);
      case IssueCategory.infrastructure:
        return _getInfrastructureSteps(issue);
    }
  }
}

Common Issues and Solutions

Performance Issues

Slow Query Performance

Symptoms:

  • High query latency
  • Timeouts on database operations
  • Increased CPU usage
  • Memory pressure

Diagnostic Steps:

// lib/diagnostics/performance_diagnostics.dart
class PerformanceDiagnostics {
  static Future<PerformanceReport> analyzeSlowQueries() async {
    final slowQueries = await _getSlowQueries();
    final indexUsage = await _analyzeIndexUsage();
    final resourceUsage = await _getResourceUsage();
    
    return PerformanceReport(
      slowQueries: slowQueries,
      indexUsage: indexUsage,
      resourceUsage: resourceUsage,
      recommendations: _generateRecommendations(
        slowQueries, indexUsage, resourceUsage),
    );
  }
  
  static Future<List<SlowQuery>> _getSlowQueries() async {
    // Query performance metrics from monitoring system
    final metrics = await PrometheusClient.query(
      'histogram_quantile(0.95, vektagraf_query_duration_seconds)'
    );
    
    return metrics.where((m) => m.value > 1.0)
        .map((m) => SlowQuery.fromMetric(m))
        .toList();
  }
  
  static Future<IndexUsageReport> _analyzeIndexUsage() async {
    // Analyze index effectiveness
    final indexStats = await VektagrafDatabase.getIndexStatistics();
    
    return IndexUsageReport(
      unusedIndexes: indexStats.where((i) => i.usageCount == 0).toList(),
      inefficientIndexes: indexStats.where((i) => i.selectivity < 0.1).toList(),
      missingIndexes: await _identifyMissingIndexes(),
    );
  }
}

class SlowQuery {
  final String query;
  final Duration averageLatency;
  final int executionCount;
  final String executionPlan;
  
  const SlowQuery({
    required this.query,
    required this.averageLatency,
    required this.executionCount,
    required this.executionPlan,
  });
}

Solutions:

  1. Query Optimization
// Before: Inefficient query
final results = await database.users
    .where((u) => u.name.contains('john'))
    .toList();

// After: Optimized with proper indexing
final results = await database.users
    .where((u) => u.nameIndex.equals('john'))
    .limit(100)
    .toList();
  1. Index Optimization
{
  "indexes": [
    {
      "name": "user_name_idx",
      "fields": ["name"],
      "type": "btree"
    },
    {
      "name": "user_email_idx", 
      "fields": ["email"],
      "type": "hash",
      "unique": true
    }
  ]
}

Vector Search Performance Issues

Symptoms:

  • Slow similarity searches
  • High memory usage during vector operations
  • Vector index build failures

Diagnostic Commands:

# Check vector index status
kubectl exec -it vektagraf-pod -- vektagraf-cli vector status

# Analyze vector index performance
kubectl exec -it vektagraf-pod -- vektagraf-cli vector analyze --index-name embeddings

# Monitor vector search metrics
kubectl exec -it vektagraf-pod -- vektagraf-cli metrics vector-search

Solutions:

// lib/optimization/vector_optimization.dart
class VectorOptimization {
  static VectorConfig optimizeForWorkload(VectorWorkload workload) {
    switch (workload.type) {
      case VectorWorkloadType.highThroughput:
        return VectorConfig(
          algorithm: VectorAlgorithm.ivfflat,
          lists: workload.dataSize ~/ 1000,
          probes: 10,
          parallelSearch: true,
        );
      
      case VectorWorkloadType.highAccuracy:
        return VectorConfig(
          algorithm: VectorAlgorithm.hnsw,
          efConstruction: 400,
          maxConnections: 32,
          efSearch: 200,
        );
      
      case VectorWorkloadType.balanced:
        return VectorConfig(
          algorithm: VectorAlgorithm.hnsw,
          efConstruction: 200,
          maxConnections: 16,
          efSearch: 100,
        );
    }
  }
}

Connectivity Issues

Connection Pool Exhaustion

Symptoms:

  • "Connection pool exhausted" errors
  • Timeouts on new connections
  • High connection wait times

Diagnostic Script:

#!/bin/bash
# scripts/diagnose-connections.sh

echo "=== Connection Pool Status ==="
kubectl exec -it vektagraf-pod -- vektagraf-cli connections status

echo "=== Active Connections ==="
kubectl exec -it vektagraf-pod -- vektagraf-cli connections list --active

echo "=== Connection Pool Configuration ==="
kubectl exec -it vektagraf-pod -- vektagraf-cli config get database.connectionPool

echo "=== Recent Connection Errors ==="
kubectl logs vektagraf-pod --since=1h | grep -i "connection.*error"

Solutions:

// lib/connection/pool_optimization.dart
class ConnectionPoolOptimizer {
  static ConnectionPoolConfig optimize(ConnectionMetrics metrics) {
    final peakConnections = metrics.maxConcurrentConnections;
    final averageHoldTime = metrics.averageConnectionHoldTime;
    
    return ConnectionPoolConfig(
      maxConnections: (peakConnections * 1.5).round(),
      minConnections: (peakConnections * 0.2).round(),
      connectionTimeout: Duration(seconds: 30),
      idleTimeout: averageHoldTime * 2,
      validationQuery: 'SELECT 1',
      testOnBorrow: true,
      testWhileIdle: true,
    );
  }
}

Network Connectivity Issues

Diagnostic Commands:

# Test network connectivity
kubectl exec -it vektagraf-pod -- nc -zv vektagraf-server 9090

# Check DNS resolution
kubectl exec -it vektagraf-pod -- nslookup vektagraf-server

# Test service discovery
kubectl exec -it vektagraf-pod -- curl -v http://vektagraf-service:80/health

# Check network policies
kubectl get networkpolicies -n vektagraf-production

Security Issues

Authentication Failures

Symptoms:

  • "Authentication failed" errors
  • JWT token validation failures
  • Unauthorized access attempts

Diagnostic Tools:

// lib/security/auth_diagnostics.dart
class AuthDiagnostics {
  static Future<AuthReport> diagnoseAuthIssues() async {
    final failedAttempts = await _getFailedAuthAttempts();
    final tokenIssues = await _analyzeTokenIssues();
    final certificateStatus = await _checkCertificates();
    
    return AuthReport(
      failedAttempts: failedAttempts,
      tokenIssues: tokenIssues,
      certificateStatus: certificateStatus,
    );
  }
  
  static Future<List<FailedAuthAttempt>> _getFailedAuthAttempts() async {
    // Query audit logs for failed authentication attempts
    final logs = await AuditLogger.query(
      filter: 'event_type:auth_failure',
      timeRange: Duration(hours: 24),
    );
    
    return logs.map((log) => FailedAuthAttempt.fromLog(log)).toList();
  }
  
  static Future<List<TokenIssue>> _analyzeTokenIssues() async {
    // Analyze JWT token validation failures
    final tokenErrors = await LogAnalyzer.findPatterns(
      pattern: r'JWT.*invalid|expired|malformed',
      timeRange: Duration(hours: 1),
    );
    
    return tokenErrors.map((error) => TokenIssue.fromError(error)).toList();
  }
}

Solutions:

# Check JWT secret configuration
kubectl get secret vektagraf-secrets -o jsonpath='{.data.jwt-secret}' | base64 -d | wc -c

# Verify certificate validity
kubectl exec -it vektagraf-pod -- openssl x509 -in /certs/tls.crt -text -noout

# Test authentication endpoint
curl -X POST https://api.yourdomain.com/auth/login \
  -H "Content-Type: application/json" \
  -d '{"username":"test","password":"test"}' \
  -v

Data Issues

Data Corruption

Symptoms:

  • Checksum validation failures
  • Inconsistent query results
  • Database integrity errors

Diagnostic Procedures:

// lib/data/integrity_checker.dart
class DataIntegrityChecker {
  static Future<IntegrityReport> checkIntegrity() async {
    final checksumResults = await _verifyChecksums();
    final referentialIntegrity = await _checkReferentialIntegrity();
    final indexConsistency = await _verifyIndexConsistency();
    
    return IntegrityReport(
      checksumResults: checksumResults,
      referentialIntegrity: referentialIntegrity,
      indexConsistency: indexConsistency,
      overallStatus: _calculateOverallStatus([
        checksumResults.status,
        referentialIntegrity.status,
        indexConsistency.status,
      ]),
    );
  }
  
  static Future<ChecksumResults> _verifyChecksums() async {
    final corruptedBlocks = <String>[];
    
    // Verify data block checksums
    await for (final block in VektagrafDatabase.getAllDataBlocks()) {
      final expectedChecksum = block.metadata.checksum;
      final actualChecksum = await _calculateChecksum(block.data);
      
      if (expectedChecksum != actualChecksum) {
        corruptedBlocks.add(block.id);
      }
    }
    
    return ChecksumResults(
      totalBlocks: await VektagrafDatabase.getBlockCount(),
      corruptedBlocks: corruptedBlocks,
      status: corruptedBlocks.isEmpty 
          ? IntegrityStatus.healthy 
          : IntegrityStatus.corrupted,
    );
  }
}

Recovery Procedures:

#!/bin/bash
# scripts/data-recovery.sh

echo "Starting data integrity check..."

# Stop application traffic
kubectl scale deployment vektagraf-app --replicas=0

# Create backup before recovery
vektagraf-backup create --output /tmp/pre-recovery-backup.vbk

# Run integrity check
vektagraf-cli integrity check --repair --verbose

# Verify repair
vektagraf-cli integrity verify

# Restore application traffic
kubectl scale deployment vektagraf-app --replicas=3

echo "Data recovery completed"

Replication Lag

Symptoms:

  • Stale data in read replicas
  • Replication delay warnings
  • Inconsistent read results

Monitoring Script:

#!/bin/bash
# scripts/monitor-replication.sh

while true; do
    echo "=== Replication Status $(date) ==="
    
    # Check replication lag
    kubectl exec -it vektagraf-master -- vektagraf-cli replication status
    
    # Check replica health
    for replica in $(kubectl get pods -l role=replica -o name); do
        echo "Checking $replica..."
        kubectl exec -it $replica -- vektagraf-cli health check
    done
    
    sleep 30
done

Debugging Techniques

Application-Level Debugging

Enabling Debug Mode

// lib/debugging/debug_config.dart
class DebugConfig {
  static void enableDebugMode() {
    Logger.root.level = Level.ALL;
    Logger.root.onRecord.listen((record) {
      print('${record.level.name}: ${record.time}: ${record.message}');
      if (record.error != null) {
        print('Error: ${record.error}');
      }
      if (record.stackTrace != null) {
        print('Stack trace: ${record.stackTrace}');
      }
    });
  }
  
  static void enableQueryLogging() {
    VektagrafDatabase.setQueryLogger((query, duration, result) {
      print('Query: $query');
      print('Duration: ${duration.inMilliseconds}ms');
      print('Result count: ${result.length}');
    });
  }
  
  static void enableVectorSearchLogging() {
    VectorSpace.setSearchLogger((query, results, duration) {
      print('Vector query: ${query.vector.length} dimensions');
      print('Results: ${results.length} matches');
      print('Duration: ${duration.inMilliseconds}ms');
    });
  }
}

Distributed Tracing

// lib/tracing/distributed_tracing.dart
class DistributedTracing {
  static void initializeTracing() {
    final tracer = JaegerTracer(
      serviceName: 'vektagraf-app',
      endpoint: Platform.environment['JAEGER_ENDPOINT'] ?? 
                'http://jaeger:14268/api/traces',
    );
    
    GlobalTracer.register(tracer);
  }
  
  static Future<T> traceOperation<T>(
    String operationName,
    Future<T> Function(Span span) operation,
  ) async {
    final span = GlobalTracer.instance.startSpan(operationName);
    
    try {
      return await operation(span);
    } catch (e) {
      span.setTag('error', true);
      span.log({'error.message': e.toString()});
      rethrow;
    } finally {
      span.finish();
    }
  }
}

// Usage example
Future<List<User>> searchUsers(String query) async {
  return await DistributedTracing.traceOperation(
    'search_users',
    (span) async {
      span.setTag('query', query);
      
      final results = await database.users
          .where((u) => u.name.contains(query))
          .toList();
      
      span.setTag('result_count', results.length);
      return results;
    },
  );
}

Infrastructure-Level Debugging

Container Debugging

#!/bin/bash
# scripts/debug-container.sh

POD_NAME="$1"
NAMESPACE="${2:-vektagraf-production}"

if [ -z "$POD_NAME" ]; then
    echo "Usage: $0 <pod-name> [namespace]"
    exit 1
fi

echo "=== Pod Information ==="
kubectl describe pod "$POD_NAME" -n "$NAMESPACE"

echo "=== Container Logs ==="
kubectl logs "$POD_NAME" -n "$NAMESPACE" --tail=100

echo "=== Resource Usage ==="
kubectl top pod "$POD_NAME" -n "$NAMESPACE"

echo "=== Network Information ==="
kubectl exec -it "$POD_NAME" -n "$NAMESPACE" -- netstat -tuln

echo "=== Process Information ==="
kubectl exec -it "$POD_NAME" -n "$NAMESPACE" -- ps aux

echo "=== Disk Usage ==="
kubectl exec -it "$POD_NAME" -n "$NAMESPACE" -- df -h

echo "=== Environment Variables ==="
kubectl exec -it "$POD_NAME" -n "$NAMESPACE" -- env | sort

Network Debugging

#!/bin/bash
# scripts/debug-network.sh

NAMESPACE="${1:-vektagraf-production}"

echo "=== Service Information ==="
kubectl get services -n "$NAMESPACE"

echo "=== Endpoint Information ==="
kubectl get endpoints -n "$NAMESPACE"

echo "=== Network Policies ==="
kubectl get networkpolicies -n "$NAMESPACE"

echo "=== DNS Resolution Test ==="
kubectl run dns-test --image=busybox --rm -it --restart=Never -- nslookup vektagraf-service

echo "=== Connectivity Test ==="
kubectl run connectivity-test --image=curlimages/curl --rm -it --restart=Never -- \
  curl -v http://vektagraf-service:80/health

Diagnostic Tools

Built-in Diagnostic Commands

// lib/cli/diagnostic_commands.dart
class DiagnosticCommands {
  static void registerCommands(CommandRunner runner) {
    runner.addCommand(HealthCheckCommand());
    runner.addCommand(PerformanceAnalysisCommand());
    runner.addCommand(ConnectionStatusCommand());
    runner.addCommand(IntegrityCheckCommand());
    runner.addCommand(ConfigValidationCommand());
  }
}

class HealthCheckCommand extends Command {
  @override
  String get name => 'health';
  
  @override
  String get description => 'Perform comprehensive health check';
  
  @override
  Future<void> run() async {
    final healthChecker = HealthChecker();
    final report = await healthChecker.performFullCheck();
    
    print('=== Health Check Report ===');
    print('Overall Status: ${report.overallStatus}');
    
    for (final check in report.checks) {
      print('${check.name}: ${check.status}');
      if (check.status != HealthStatus.healthy) {
        print('  Issue: ${check.message}');
        print('  Recommendation: ${check.recommendation}');
      }
    }
  }
}

class PerformanceAnalysisCommand extends Command {
  @override
  String get name => 'perf';
  
  @override
  String get description => 'Analyze performance metrics';
  
  @override
  Future<void> run() async {
    final analyzer = PerformanceAnalyzer();
    final report = await analyzer.generateReport();
    
    print('=== Performance Analysis ===');
    print('Query Performance:');
    print('  Average Latency: ${report.averageQueryLatency}ms');
    print('  95th Percentile: ${report.p95QueryLatency}ms');
    print('  Slow Queries: ${report.slowQueries.length}');
    
    print('Vector Search Performance:');
    print('  Average Latency: ${report.averageVectorLatency}ms');
    print('  Throughput: ${report.vectorThroughput} queries/sec');
    
    print('Resource Usage:');
    print('  CPU: ${report.cpuUsage}%');
    print('  Memory: ${report.memoryUsage}%');
    print('  Disk I/O: ${report.diskIOPS} IOPS');
  }
}

External Monitoring Tools

Prometheus Queries for Troubleshooting

# monitoring/troubleshooting-queries.yaml
queries:
  # High error rate
  high_error_rate: |
    rate(vektagraf_requests_total{status=~"5.."}[5m]) / 
    rate(vektagraf_requests_total[5m]) > 0.05
  
  # High latency
  high_latency: |
    histogram_quantile(0.95, 
      rate(vektagraf_request_duration_seconds_bucket[5m])) > 1.0
  
  # Memory pressure
  memory_pressure: |
    (vektagraf_memory_usage_bytes / vektagraf_memory_limit_bytes) > 0.8
  
  # Connection pool exhaustion
  connection_pool_exhaustion: |
    vektagraf_connection_pool_active / vektagraf_connection_pool_max > 0.9
  
  # Disk space low
  disk_space_low: |
    (vektagraf_disk_used_bytes / vektagraf_disk_total_bytes) > 0.85
  
  # Replication lag
  replication_lag: |
    vektagraf_replication_lag_seconds > 30

Grafana Dashboard for Troubleshooting

{
  "dashboard": {
    "title": "Vektagraf Troubleshooting",
    "panels": [
      {
        "title": "Error Rate",
        "type": "stat",
        "targets": [
          {
            "expr": "rate(vektagraf_requests_total{status=~\"5..\"}[5m])",
            "legendFormat": "Error Rate"
          }
        ],
        "thresholds": [
          {"color": "green", "value": 0},
          {"color": "yellow", "value": 0.01},
          {"color": "red", "value": 0.05}
        ]
      },
      {
        "title": "Response Time Distribution",
        "type": "heatmap",
        "targets": [
          {
            "expr": "rate(vektagraf_request_duration_seconds_bucket[5m])",
            "format": "heatmap"
          }
        ]
      },
      {
        "title": "Resource Usage",
        "type": "timeseries",
        "targets": [
          {
            "expr": "vektagraf_cpu_usage_percent",
            "legendFormat": "CPU %"
          },
          {
            "expr": "vektagraf_memory_usage_percent", 
            "legendFormat": "Memory %"
          }
        ]
      }
    ]
  }
}

Maintenance Procedures

Routine Maintenance Tasks

Daily Maintenance Checklist

#!/bin/bash
# scripts/daily-maintenance.sh

echo "=== Daily Maintenance $(date) ==="

# Check system health
echo "1. Checking system health..."
kubectl exec -it vektagraf-pod -- vektagraf-cli health check

# Verify backups
echo "2. Verifying backups..."
./scripts/verify-backups.sh

# Check disk space
echo "3. Checking disk space..."
kubectl exec -it vektagraf-pod -- df -h

# Review error logs
echo "4. Reviewing error logs..."
kubectl logs vektagraf-pod --since=24h | grep -i error | tail -20

# Check replication status
echo "5. Checking replication status..."
kubectl exec -it vektagraf-pod -- vektagraf-cli replication status

# Performance metrics summary
echo "6. Performance summary..."
kubectl exec -it vektagraf-pod -- vektagraf-cli metrics summary

echo "Daily maintenance completed"

Weekly Maintenance Tasks

#!/bin/bash
# scripts/weekly-maintenance.sh

echo "=== Weekly Maintenance $(date) ==="

# Database optimization
echo "1. Running database optimization..."
kubectl exec -it vektagraf-pod -- vektagraf-cli optimize --analyze-tables

# Index maintenance
echo "2. Performing index maintenance..."
kubectl exec -it vektagraf-pod -- vektagraf-cli index rebuild --unused-only

# Security scan
echo "3. Running security scan..."
./scripts/security-scan.sh

# Performance analysis
echo "4. Generating performance report..."
kubectl exec -it vektagraf-pod -- vektagraf-cli perf report --output /tmp/perf-report.json

# Cleanup old logs
echo "5. Cleaning up old logs..."
kubectl exec -it vektagraf-pod -- find /var/log -name "*.log" -mtime +7 -delete

# Update monitoring dashboards
echo "6. Updating monitoring dashboards..."
./scripts/update-dashboards.sh

echo "Weekly maintenance completed"

Database Maintenance

Index Optimization

// lib/maintenance/index_optimizer.dart
class IndexOptimizer {
  static Future<IndexOptimizationReport> optimizeIndexes() async {
    final unusedIndexes = await _findUnusedIndexes();
    final duplicateIndexes = await _findDuplicateIndexes();
    final missingIndexes = await _suggestMissingIndexes();
    
    // Remove unused indexes
    for (final index in unusedIndexes) {
      await VektagrafDatabase.dropIndex(index.name);
    }
    
    // Create missing indexes
    for (final indexSuggestion in missingIndexes) {
      await VektagrafDatabase.createIndex(indexSuggestion);
    }
    
    return IndexOptimizationReport(
      removedIndexes: unusedIndexes,
      createdIndexes: missingIndexes,
      duplicateIndexes: duplicateIndexes,
    );
  }
  
  static Future<List<IndexInfo>> _findUnusedIndexes() async {
    final indexStats = await VektagrafDatabase.getIndexStatistics();
    return indexStats.where((index) => 
      index.usageCount == 0 && 
      index.createdAt.isBefore(DateTime.now().subtract(Duration(days: 30)))
    ).toList();
  }
  
  static Future<List<IndexSuggestion>> _suggestMissingIndexes() async {
    final queryAnalysis = await QueryAnalyzer.analyzeSlowQueries();
    final suggestions = <IndexSuggestion>[];
    
    for (final query in queryAnalysis.slowQueries) {
      final whereClause = query.parseWhereClause();
      if (whereClause.fields.isNotEmpty) {
        suggestions.add(IndexSuggestion(
          fields: whereClause.fields,
          type: IndexType.btree,
          estimatedImprovement: query.estimatedImprovement,
        ));
      }
    }
    
    return suggestions;
  }
}

Vacuum and Analyze Operations

#!/bin/bash
# scripts/database-maintenance.sh

echo "Starting database maintenance..."

# Analyze table statistics
echo "Analyzing table statistics..."
kubectl exec -it vektagraf-pod -- vektagraf-cli analyze --all-tables

# Vacuum unused space
echo "Vacuuming unused space..."
kubectl exec -it vektagraf-pod -- vektagraf-cli vacuum --full

# Rebuild fragmented indexes
echo "Rebuilding fragmented indexes..."
kubectl exec -it vektagraf-pod -- vektagraf-cli index rebuild --fragmented-only

# Update query planner statistics
echo "Updating query planner statistics..."
kubectl exec -it vektagraf-pod -- vektagraf-cli stats update

echo "Database maintenance completed"

System Maintenance

Log Rotation and Cleanup

# k8s/log-rotation-cronjob.yaml
apiVersion: batch/v1
kind: CronJob
metadata:
  name: log-rotation
  namespace: vektagraf-production
spec:
  schedule: "0 2 * * *"  # Daily at 2 AM
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: log-rotator
            image: busybox
            command:
            - /bin/sh
            - -c
            - |
              # Rotate application logs
              find /var/log -name "*.log" -size +100M -exec gzip {} \;
              
              # Remove old compressed logs
              find /var/log -name "*.log.gz" -mtime +30 -delete
              
              # Rotate audit logs
              find /var/audit -name "*.audit" -mtime +7 -exec gzip {} \;
              find /var/audit -name "*.audit.gz" -mtime +90 -delete
              
              # Clean up temporary files
              find /tmp -type f -mtime +1 -delete
            volumeMounts:
            - name: log-volume
              mountPath: /var/log
            - name: audit-volume
              mountPath: /var/audit
          volumes:
          - name: log-volume
            hostPath:
              path: /var/log/vektagraf
          - name: audit-volume
            hostPath:
              path: /var/audit/vektagraf
          restartPolicy: OnFailure

Certificate Renewal

#!/bin/bash
# scripts/renew-certificates.sh

echo "Checking certificate expiration..."

# Check TLS certificates
for cert in $(kubectl get secrets -n vektagraf-production -o name | grep tls); do
    echo "Checking $cert..."
    
    expiry=$(kubectl get "$cert" -n vektagraf-production -o jsonpath='{.data.tls\.crt}' | \
             base64 -d | openssl x509 -noout -enddate | cut -d= -f2)
    
    expiry_epoch=$(date -d "$expiry" +%s)
    current_epoch=$(date +%s)
    days_until_expiry=$(( (expiry_epoch - current_epoch) / 86400 ))
    
    echo "  Expires: $expiry ($days_until_expiry days)"
    
    if [ $days_until_expiry -lt 30 ]; then
        echo "  WARNING: Certificate expires in less than 30 days!"
        # Trigger certificate renewal
        kubectl annotate "$cert" cert-manager.io/force-renewal="$(date +%s)"
    fi
done

echo "Certificate check completed"

Health Checks and Monitoring

Comprehensive Health Checks

// lib/health/health_checker.dart
class HealthChecker {
  final List<HealthCheck> checks;
  
  HealthChecker() : checks = [
    DatabaseHealthCheck(),
    VectorSearchHealthCheck(),
    SecurityHealthCheck(),
    NetworkHealthCheck(),
    ResourceHealthCheck(),
  ];
  
  Future<HealthReport> performFullCheck() async {
    final results = <HealthCheckResult>[];
    
    for (final check in checks) {
      try {
        final result = await check.perform();
        results.add(result);
      } catch (e) {
        results.add(HealthCheckResult(
          name: check.name,
          status: HealthStatus.unhealthy,
          message: 'Health check failed: $e',
          timestamp: DateTime.now(),
        ));
      }
    }
    
    return HealthReport(
      timestamp: DateTime.now(),
      checks: results,
      overallStatus: _calculateOverallStatus(results),
    );
  }
  
  HealthStatus _calculateOverallStatus(List<HealthCheckResult> results) {
    if (results.any((r) => r.status == HealthStatus.unhealthy)) {
      return HealthStatus.unhealthy;
    }
    if (results.any((r) => r.status == HealthStatus.degraded)) {
      return HealthStatus.degraded;
    }
    return HealthStatus.healthy;
  }
}

abstract class HealthCheck {
  String get name;
  Future<HealthCheckResult> perform();
}

class DatabaseHealthCheck implements HealthCheck {
  @override
  String get name => 'Database';
  
  @override
  Future<HealthCheckResult> perform() async {
    try {
      // Test basic connectivity
      await VektagrafDatabase.ping();
      
      // Test query performance
      final stopwatch = Stopwatch()..start();
      await VektagrafDatabase.query('SELECT 1');
      stopwatch.stop();
      
      if (stopwatch.elapsedMilliseconds > 1000) {
        return HealthCheckResult(
          name: name,
          status: HealthStatus.degraded,
          message: 'Database responding slowly (${stopwatch.elapsedMilliseconds}ms)',
          timestamp: DateTime.now(),
        );
      }
      
      return HealthCheckResult(
        name: name,
        status: HealthStatus.healthy,
        message: 'Database is healthy',
        timestamp: DateTime.now(),
      );
    } catch (e) {
      return HealthCheckResult(
        name: name,
        status: HealthStatus.unhealthy,
        message: 'Database connection failed: $e',
        timestamp: DateTime.now(),
      );
    }
  }
}

class VectorSearchHealthCheck implements HealthCheck {
  @override
  String get name => 'Vector Search';
  
  @override
  Future<HealthCheckResult> perform() async {
    try {
      // Test vector search functionality
      final testVector = List.generate(768, (i) => Random().nextDouble());
      
      final stopwatch = Stopwatch()..start();
      final results = await VectorSpace.search(
        vector: testVector,
        limit: 10,
      );
      stopwatch.stop();
      
      if (stopwatch.elapsedMilliseconds > 5000) {
        return HealthCheckResult(
          name: name,
          status: HealthStatus.degraded,
          message: 'Vector search is slow (${stopwatch.elapsedMilliseconds}ms)',
          timestamp: DateTime.now(),
        );
      }
      
      return HealthCheckResult(
        name: name,
        status: HealthStatus.healthy,
        message: 'Vector search is healthy',
        timestamp: DateTime.now(),
      );
    } catch (e) {
      return HealthCheckResult(
        name: name,
        status: HealthStatus.unhealthy,
        message: 'Vector search failed: $e',
        timestamp: DateTime.now(),
      );
    }
  }
}

enum HealthStatus { healthy, degraded, unhealthy }

class HealthCheckResult {
  final String name;
  final HealthStatus status;
  final String message;
  final DateTime timestamp;
  
  const HealthCheckResult({
    required this.name,
    required this.status,
    required this.message,
    required this.timestamp,
  });
}

Automated Monitoring Setup

# monitoring/service-monitor.yaml
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: vektagraf-monitor
  namespace: vektagraf-production
spec:
  selector:
    matchLabels:
      app: vektagraf
  endpoints:
  - port: metrics
    interval: 30s
    path: /metrics
    honorLabels: true
---
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
  name: vektagraf-alerts
  namespace: vektagraf-production
spec:
  groups:
  - name: vektagraf.rules
    rules:
    - alert: VektagrafDown
      expr: up{job="vektagraf"} == 0
      for: 1m
      labels:
        severity: critical
      annotations:
        summary: "Vektagraf instance is down"
        description: "Vektagraf instance {{ $labels.instance }} has been down for more than 1 minute"
    
    - alert: VektagrafHighErrorRate
      expr: rate(vektagraf_requests_total{status=~"5.."}[5m]) / rate(vektagraf_requests_total[5m]) > 0.05
      for: 5m
      labels:
        severity: warning
      annotations:
        summary: "High error rate detected"
        description: "Error rate is {{ $value | humanizePercentage }}"
    
    - alert: VektagrafHighLatency
      expr: histogram_quantile(0.95, rate(vektagraf_request_duration_seconds_bucket[5m])) > 1.0
      for: 5m
      labels:
        severity: warning
      annotations:
        summary: "High latency detected"
        description: "95th percentile latency is {{ $value }}s"

Performance Optimization

Query Performance Tuning

// lib/optimization/query_optimizer.dart
class QueryOptimizer {
  static Future<OptimizationReport> optimizeQueries() async {
    final slowQueries = await _identifySlowQueries();
    final optimizations = <QueryOptimization>[];
    
    for (final query in slowQueries) {
      final optimization = await _optimizeQuery(query);
      optimizations.add(optimization);
    }
    
    return OptimizationReport(
      originalQueries: slowQueries,
      optimizations: optimizations,
      estimatedImprovement: _calculateImprovement(optimizations),
    );
  }
  
  static Future<QueryOptimization> _optimizeQuery(SlowQuery query) async {
    final suggestions = <OptimizationSuggestion>[];
    
    // Analyze query structure
    final analysis = QueryAnalyzer.analyze(query.sql);
    
    // Suggest index improvements
    if (analysis.missingIndexes.isNotEmpty) {
      suggestions.add(OptimizationSuggestion(
        type: OptimizationType.addIndex,
        description: 'Add indexes on: ${analysis.missingIndexes.join(", ")}',
        estimatedImprovement: 0.7,
      ));
    }
    
    // Suggest query rewriting
    if (analysis.canBeRewritten) {
      suggestions.add(OptimizationSuggestion(
        type: OptimizationType.rewriteQuery,
        description: 'Rewrite query to use more efficient patterns',
        rewrittenQuery: analysis.suggestedRewrite,
        estimatedImprovement: 0.5,
      ));
    }
    
    // Suggest partitioning
    if (analysis.tableSize > 1000000) {
      suggestions.add(OptimizationSuggestion(
        type: OptimizationType.partitioning,
        description: 'Consider partitioning large table',
        estimatedImprovement: 0.3,
      ));
    }
    
    return QueryOptimization(
      originalQuery: query,
      suggestions: suggestions,
    );
  }
}

Memory Optimization

// lib/optimization/memory_optimizer.dart
class MemoryOptimizer {
  static Future<MemoryOptimizationReport> optimizeMemoryUsage() async {
    final currentUsage = await _getCurrentMemoryUsage();
    final recommendations = <MemoryRecommendation>[];
    
    // Analyze cache usage
    if (currentUsage.cacheHitRate < 0.8) {
      recommendations.add(MemoryRecommendation(
        type: MemoryOptimizationType.increaseCacheSize,
        description: 'Increase cache size to improve hit rate',
        currentValue: currentUsage.cacheSize,
        recommendedValue: (currentUsage.cacheSize * 1.5).round(),
      ));
    }
    
    // Analyze connection pool
    if (currentUsage.connectionPoolUtilization > 0.9) {
      recommendations.add(MemoryRecommendation(
        type: MemoryOptimizationType.optimizeConnectionPool,
        description: 'Optimize connection pool configuration',
        currentValue: currentUsage.maxConnections,
        recommendedValue: (currentUsage.maxConnections * 1.2).round(),
      ));
    }
    
    // Analyze vector index memory
    if (currentUsage.vectorIndexMemory > currentUsage.totalMemory * 0.6) {
      recommendations.add(MemoryRecommendation(
        type: MemoryOptimizationType.optimizeVectorIndex,
        description: 'Optimize vector index memory usage',
        currentValue: currentUsage.vectorIndexMemory,
        recommendedValue: (currentUsage.totalMemory * 0.5).round(),
      ));
    }
    
    return MemoryOptimizationReport(
      currentUsage: currentUsage,
      recommendations: recommendations,
    );
  }
}

Best Practices

Troubleshooting Best Practices

  1. Systematic Approach

    • Follow a consistent methodology
    • Document all steps and findings
    • Test hypotheses methodically
    • Verify solutions thoroughly
  2. Information Gathering

    • Collect comprehensive logs
    • Gather performance metrics
    • Document system state
    • Interview users about symptoms
  3. Root Cause Analysis

    • Look beyond symptoms
    • Consider system interactions
    • Use data-driven analysis
    • Validate assumptions

Maintenance Best Practices

  1. Preventive Maintenance

    • Regular health checks
    • Proactive monitoring
    • Scheduled maintenance windows
    • Capacity planning
  2. Documentation

    • Maintain runbooks
    • Document procedures
    • Track changes
    • Share knowledge
  3. Testing

    • Test maintenance procedures
    • Validate backups regularly
    • Practice disaster recovery
    • Monitor after changes

Advanced Topics

Automated Remediation

// lib/automation/auto_remediation.dart
class AutoRemediation {
  static final Map<String, RemediationAction> actions = {
    'high_memory_usage': RestartServiceAction(),
    'connection_pool_exhaustion': ScaleConnectionPoolAction(),
    'disk_space_low': CleanupLogsAction(),
    'replication_lag': RestartReplicationAction(),
  };
  
  static Future<void> handleAlert(Alert alert) async {
    final action = actions[alert.type];
    if (action != null && action.isAutomated) {
      try {
        await action.execute(alert.context);
        await _notifySuccess(alert, action);
      } catch (e) {
        await _notifyFailure(alert, action, e);
      }
    } else {
      await _escalateToHuman(alert);
    }
  }
}

abstract class RemediationAction {
  bool get isAutomated;
  Future<void> execute(Map<String, dynamic> context);
}

class RestartServiceAction implements RemediationAction {
  @override
  bool get isAutomated => true;
  
  @override
  Future<void> execute(Map<String, dynamic> context) async {
    final serviceName = context['service_name'] as String;
    await KubernetesClient.restartDeployment(serviceName);
  }
}

Chaos Engineering for Resilience Testing

// lib/chaos/chaos_experiments.dart
class ChaosExperiments {
  static Future<void> runNetworkLatencyExperiment() async {
    // Inject network latency
    await NetworkChaos.injectLatency(
      duration: Duration(minutes: 5),
      latency: Duration(milliseconds: 100),
      targets: ['vektagraf-service'],
    );
    
    // Monitor system behavior
    await _monitorSystemHealth(Duration(minutes: 10));
  }
  
  static Future<void> runMemoryPressureExperiment() async {
    // Create memory pressure
    await ResourceChaos.createMemoryPressure(
      duration: Duration(minutes: 3),
      percentage: 80,
      targets: ['vektagraf-app'],
    );
    
    // Verify graceful degradation
    await _verifyGracefulDegradation();
  }
}

Summary

This chapter provided comprehensive guidance for troubleshooting and maintaining Vektagraf applications, including:

  • Systematic Troubleshooting: Methodical approaches to problem resolution
  • Common Issues: Solutions for performance, connectivity, security, and data issues
  • Debugging Techniques: Application and infrastructure-level debugging
  • Diagnostic Tools: Built-in commands and external monitoring tools
  • Maintenance Procedures: Routine tasks and database optimization
  • Health Monitoring: Comprehensive health checks and automated monitoring
  • Performance Optimization: Query tuning and resource optimization

Key Takeaways

  1. Follow systematic troubleshooting methodologies
  2. Use comprehensive diagnostic tools and monitoring
  3. Implement proactive maintenance procedures
  4. Maintain detailed documentation and runbooks
  5. Practice disaster recovery and chaos engineering
  6. Automate routine tasks and remediation where possible

Next Steps

This completes Part V: Enterprise Deployment. Continue with:

  • Part VI: Use Cases and Patterns (Chapters 19-22)20-23)
  • Part VII: Reference (Chapters 23-26)24-27)