Chapter 16: Performance Tuning and Optimization
Overview
Performance optimization is crucial for Vektagraf applications handling large datasets and high-throughput workloads. This chapter covers performance profiling, bottleneck identification, memory optimization, query tuning, and scaling strategies for maximum efficiency.
Learning Objectives
- Profile and identify performance bottlenecks in Vektagraf applications
- Optimize memory usage and garbage collection for large datasets
- Tune query performance and vector search operations
- Implement effective caching and indexing strategies
- Design scalable architectures for high-performance applications
Prerequisites
- Understanding of Vektagraf core concepts (Chapters 1-3)
- Knowledge of database operations and vector search (Chapters 4-5)
- Familiarity with monitoring and observability (Chapter 13)
Core Concepts
Performance Optimization Framework
Vektagraf performance optimization follows a systematic approach:
- Measurement: Profile and benchmark current performance
- Analysis: Identify bottlenecks and optimization opportunities
- Optimization: Apply targeted performance improvements
- Validation: Measure improvements and iterate
graph TB
A[Performance Profiling] --> B[Bottleneck Analysis]
B --> C[Memory Optimization]
B --> D[Query Optimization]
B --> E[Index Optimization]
B --> F[Caching Strategy]
C --> G[Validation & Benchmarking]
D --> G
E --> G
F --> G
G --> H{Performance Target Met?}
H -->|No| B
H -->|Yes| I[Production Deployment]
Performance Metrics and KPIs
Key performance indicators for Vektagraf applications:
- Throughput: Operations per second (OPS)
- Latency: Response time percentiles (P50, P95, P99)
- Memory Usage: Heap utilization and garbage collection
- CPU Utilization: Processing efficiency
- I/O Performance: Disk and network throughput
Prac
tical Examples
Performance Profiling and Benchmarking
1. Comprehensive Performance Profiler
import 'package:vektagraf/vektagraf.dart';
// Advanced performance profiler for Vektagraf operations
class VektagrafProfiler {
final Map<String, ProfilerSession> _sessions = {};
final List<BenchmarkResult> _benchmarkHistory = [];
ProfilerSession startSession(String name) {
final session = ProfilerSession(name);
_sessions[name] = session;
return session;
}
void endSession(String name) {
final session = _sessions.remove(name);
if (session != null) {
session.end();
_benchmarkHistory.add(session.getResult());
}
}
Future<BenchmarkSuite> runBenchmarkSuite(
VektagrafDatabase database,
) async {
final suite = BenchmarkSuite();
// Database operation benchmarks
await _benchmarkDatabaseOperations(database, suite);
// Vector search benchmarks
await _benchmarkVectorSearch(database, suite);
// Query optimization benchmarks
await _benchmarkQueryPerformance(database, suite);
// Memory usage benchmarks
await _benchmarkMemoryUsage(database, suite);
return suite;
}
Future<void> _benchmarkDatabaseOperations(
VektagrafDatabase database,
BenchmarkSuite suite,
) async {
// Create test data
final testObjects = _generateTestObjects(1000);
// Benchmark create operations
final createBenchmark = await _benchmarkOperation(
'create_operations',
() async {
await database.transaction((txn) async {
for (final obj in testObjects) {
await txn.save(obj);
}
});
},
);
suite.addResult(createBenchmark);
// Benchmark read operations
final readBenchmark = await _benchmarkOperation(
'read_operations',
() async {
for (final obj in testObjects) {
await database.findById(obj.id);
}
},
);
suite.addResult(readBenchmark);
// Benchmark query operations
final queryBenchmark = await _benchmarkOperation(
'query_operations',
() async {
await database.query((obj) => obj.type == 'TestObject').toList();
},
);
suite.addResult(queryBenchmark);
}
Future<BenchmarkResult> _benchmarkOperation(
String name,
Future<void> Function() operation,
) async {
final iterations = 10;
final durations = <Duration>[];
// Warm up
await operation();
// Measure iterations
for (int i = 0; i < iterations; i++) {
final stopwatch = Stopwatch()..start();
await operation();
stopwatch.stop();
durations.add(stopwatch.elapsed);
}
return BenchmarkResult(
name: name,
iterations: iterations,
durations: durations,
timestamp: DateTime.now(),
);
}
}
class ProfilerSession {
final String name;
final DateTime startTime;
final Map<String, dynamic> metrics = {};
final List<ProfilerEvent> events = [];
DateTime? endTime;
ProfilerSession(this.name) : startTime = DateTime.now();
void recordEvent(String event, {Map<String, dynamic>? data}) {
events.add(ProfilerEvent(
name: event,
timestamp: DateTime.now(),
data: data ?? {},
));
}
void recordMetric(String name, dynamic value) {
metrics[name] = value;
}
void end() {
endTime = DateTime.now();
}
BenchmarkResult getResult() {
return BenchmarkResult(
name: name,
iterations: 1,
durations: [duration],
timestamp: startTime,
metrics: Map.from(metrics),
events: List.from(events),
);
}
Duration get duration => (endTime ?? DateTime.now()).difference(startTime);
}
class ProfilerEvent {
final String name;
final DateTime timestamp;
final Map<String, dynamic> data;
ProfilerEvent({
required this.name,
required this.timestamp,
required this.data,
});
}
class BenchmarkResult {
final String name;
final int iterations;
final List<Duration> durations;
final DateTime timestamp;
final Map<String, dynamic> metrics;
final List<ProfilerEvent> events;
BenchmarkResult({
required this.name,
required this.iterations,
required this.durations,
required this.timestamp,
this.metrics = const {},
this.events = const [],
});
Duration get averageDuration {
if (durations.isEmpty) return Duration.zero;
final totalMicros = durations.fold<int>(
0, (sum, d) => sum + d.inMicroseconds);
return Duration(microseconds: totalMicros ~/ durations.length);
}
Duration get minDuration => durations.isEmpty
? Duration.zero
: durations.reduce((a, b) => a < b ? a : b);
Duration get maxDuration => durations.isEmpty
? Duration.zero
: durations.reduce((a, b) => a > b ? a : b);
double get operationsPerSecond => iterations / (averageDuration.inMicroseconds / 1000000.0);
Map<String, dynamic> toJson() {
return {
'name': name,
'iterations': iterations,
'average_duration_ms': averageDuration.inMilliseconds,
'min_duration_ms': minDuration.inMilliseconds,
'max_duration_ms': maxDuration.inMilliseconds,
'operations_per_second': operationsPerSecond,
'timestamp': timestamp.toIso8601String(),
'metrics': metrics,
};
}
}
class BenchmarkSuite {
final List<BenchmarkResult> results = [];
final DateTime startTime = DateTime.now();
void addResult(BenchmarkResult result) {
results.add(result);
}
Map<String, dynamic> getSummary() {
return {
'total_benchmarks': results.length,
'start_time': startTime.toIso8601String(),
'results': results.map((r) => r.toJson()).toList(),
'summary_stats': _calculateSummaryStats(),
};
}
Map<String, dynamic> _calculateSummaryStats() {
if (results.isEmpty) return {};
final totalOps = results.fold<double>(
0.0, (sum, r) => sum + r.operationsPerSecond);
return {
'average_ops_per_second': totalOps / results.length,
'fastest_operation': results.reduce((a, b) =>
a.averageDuration < b.averageDuration ? a : b).name,
'slowest_operation': results.reduce((a, b) =>
a.averageDuration > b.averageDuration ? a : b).name,
};
}
}
```####
2. Memory Usage Analysis
```dart
// Memory profiling and optimization tools
class MemoryProfiler {
final Map<String, MemorySnapshot> _snapshots = {};
MemorySnapshot takeSnapshot(String name) {
final snapshot = MemorySnapshot(
name: name,
timestamp: DateTime.now(),
heapUsage: _getCurrentHeapUsage(),
objectCounts: _getObjectCounts(),
);
_snapshots[name] = snapshot;
return snapshot;
}
MemoryAnalysis compareSnapshots(String before, String after) {
final beforeSnapshot = _snapshots[before];
final afterSnapshot = _snapshots[after];
if (beforeSnapshot == null || afterSnapshot == null) {
throw ArgumentError('Snapshot not found');
}
return MemoryAnalysis(
before: beforeSnapshot,
after: afterSnapshot,
);
}
Future<MemoryOptimizationReport> analyzeMemoryUsage(
VektagrafDatabase database,
) async {
final report = MemoryOptimizationReport();
// Analyze object storage efficiency
await _analyzeObjectStorage(database, report);
// Analyze vector storage efficiency
await _analyzeVectorStorage(database, report);
// Analyze cache efficiency
await _analyzeCacheUsage(database, report);
// Analyze garbage collection patterns
await _analyzeGarbageCollection(report);
return report;
}
Future<void> _analyzeObjectStorage(
VektagrafDatabase database,
MemoryOptimizationReport report,
) async {
final objects = await database.query((_) => true).toList();
int totalSize = 0;
final typeSizes = <String, int>{};
for (final obj in objects) {
final size = _estimateObjectSize(obj);
totalSize += size;
typeSizes[obj.type] = (typeSizes[obj.type] ?? 0) + size;
}
report.objectStorageAnalysis = ObjectStorageAnalysis(
totalObjects: objects.length,
totalSizeBytes: totalSize,
averageSizeBytes: objects.isNotEmpty ? totalSize ~/ objects.length : 0,
typeSizes: typeSizes,
);
}
int _estimateObjectSize(VektagrafObject obj) {
// Simplified size estimation
int size = 100; // Base object overhead
// Add property sizes
for (final entry in obj.properties.entries) {
size += entry.key.length * 2; // Key size (UTF-16)
size += _estimateValueSize(entry.value);
}
return size;
}
int _estimateValueSize(dynamic value) {
if (value == null) return 8;
if (value is String) return value.length * 2;
if (value is int) return 8;
if (value is double) return 8;
if (value is bool) return 1;
if (value is List) {
return value.fold<int>(16, (sum, item) => sum + _estimateValueSize(item));
}
if (value is Map) {
return value.entries.fold<int>(16, (sum, entry) =>
sum + _estimateValueSize(entry.key) + _estimateValueSize(entry.value));
}
return 64; // Default for unknown types
}
HeapUsage _getCurrentHeapUsage() {
// Platform-specific implementation would go here
return HeapUsage(
used: 50 * 1024 * 1024, // 50MB
total: 100 * 1024 * 1024, // 100MB
max: 200 * 1024 * 1024, // 200MB
);
}
Map<String, int> _getObjectCounts() {
// Platform-specific implementation would go here
return {
'VektagrafObject': 1000,
'String': 5000,
'List': 500,
'Map': 300,
};
}
}
class MemorySnapshot {
final String name;
final DateTime timestamp;
final HeapUsage heapUsage;
final Map<String, int> objectCounts;
MemorySnapshot({
required this.name,
required this.timestamp,
required this.heapUsage,
required this.objectCounts,
});
}
class HeapUsage {
final int used;
final int total;
final int max;
HeapUsage({
required this.used,
required this.total,
required this.max,
});
double get usageRatio => used / total;
int get available => total - used;
}
class MemoryAnalysis {
final MemorySnapshot before;
final MemorySnapshot after;
MemoryAnalysis({
required this.before,
required this.after,
});
int get heapGrowth => after.heapUsage.used - before.heapUsage.used;
Map<String, int> get objectCountChanges {
final changes = <String, int>{};
final allTypes = {...before.objectCounts.keys, ...after.objectCounts.keys};
for (final type in allTypes) {
final beforeCount = before.objectCounts[type] ?? 0;
final afterCount = after.objectCounts[type] ?? 0;
changes[type] = afterCount - beforeCount;
}
return changes;
}
Map<String, dynamic> toJson() {
return {
'heap_growth_bytes': heapGrowth,
'object_count_changes': objectCountChanges,
'before_usage_ratio': before.heapUsage.usageRatio,
'after_usage_ratio': after.heapUsage.usageRatio,
};
}
}
```### Qu
ery Optimization
#### 1. Query Performance Analyzer
```dart
// Advanced query optimization and analysis
class QueryOptimizer {
final VektagrafDatabase _database;
final Map<String, QueryPlan> _cachedPlans = {};
final QueryPerformanceTracker _performanceTracker;
QueryOptimizer(this._database)
: _performanceTracker = QueryPerformanceTracker();
Future<OptimizedQuery<T>> optimizeQuery<T>(
VektagrafList<T> query,
) async {
final querySignature = _generateQuerySignature(query);
// Check for cached optimization plan
final cachedPlan = _cachedPlans[querySignature];
if (cachedPlan != null && cachedPlan.isValid) {
return OptimizedQuery<T>(query, cachedPlan);
}
// Analyze query and create optimization plan
final plan = await _analyzeAndOptimize(query);
_cachedPlans[querySignature] = plan;
return OptimizedQuery<T>(query, plan);
}
Future<QueryPlan> _analyzeAndOptimize<T>(VektagrafList<T> query) async {
final analysis = await _analyzeQuery(query);
final optimizations = _identifyOptimizations(analysis);
return QueryPlan(
signature: _generateQuerySignature(query),
analysis: analysis,
optimizations: optimizations,
createdAt: DateTime.now(),
);
}
Future<QueryAnalysis> _analyzeQuery<T>(VektagrafList<T> query) async {
// Estimate query complexity
final complexity = _estimateQueryComplexity(query);
// Analyze available indexes
final indexAnalysis = await _analyzeAvailableIndexes(query);
// Estimate result set size
final estimatedResults = await _estimateResultSetSize(query);
// Analyze filter selectivity
final filterAnalysis = _analyzeFilterSelectivity(query);
return QueryAnalysis(
complexity: complexity,
indexAnalysis: indexAnalysis,
estimatedResults: estimatedResults,
filterAnalysis: filterAnalysis,
);
}
List<QueryOptimization> _identifyOptimizations(QueryAnalysis analysis) {
final optimizations = <QueryOptimization>[];
// Index recommendations
if (analysis.indexAnalysis.missingIndexes.isNotEmpty) {
optimizations.add(QueryOptimization(
type: OptimizationType.createIndex,
description: 'Create indexes for better performance',
impact: OptimizationImpact.high,
details: {
'missing_indexes': analysis.indexAnalysis.missingIndexes,
},
));
}
// Filter reordering
if (analysis.filterAnalysis.canReorder) {
optimizations.add(QueryOptimization(
type: OptimizationType.reorderFilters,
description: 'Reorder filters for better selectivity',
impact: OptimizationImpact.medium,
details: {
'optimal_order': analysis.filterAnalysis.optimalOrder,
},
));
}
// Result limiting
if (analysis.estimatedResults > 10000) {
optimizations.add(QueryOptimization(
type: OptimizationType.addLimit,
description: 'Add LIMIT clause to reduce result set',
impact: OptimizationImpact.high,
details: {
'recommended_limit': 1000,
},
));
}
return optimizations;
}
Future<T> executeOptimized<T>(
OptimizedQuery<T> optimizedQuery,
Future<T> Function() executor,
) async {
final stopwatch = Stopwatch()..start();
try {
final result = await executor();
stopwatch.stop();
// Record performance metrics
_performanceTracker.recordExecution(
optimizedQuery.plan.signature,
stopwatch.elapsed,
true,
);
return result;
} catch (e) {
stopwatch.stop();
_performanceTracker.recordExecution(
optimizedQuery.plan.signature,
stopwatch.elapsed,
false,
);
rethrow;
}
}
String _generateQuerySignature<T>(VektagrafList<T> query) {
// Generate a unique signature for the query structure
return 'query_${query.hashCode}';
}
int _estimateQueryComplexity<T>(VektagrafList<T> query) {
// Simplified complexity estimation
int complexity = 1;
// Add complexity for each operation
// This would analyze the actual query operations
return complexity;
}
}
class OptimizedQuery<T> {
final VektagrafList<T> originalQuery;
final QueryPlan plan;
OptimizedQuery(this.originalQuery, this.plan);
Future<List<T>> execute() async {
// Apply optimizations and execute query
return await originalQuery.toList();
}
}
class QueryPlan {
final String signature;
final QueryAnalysis analysis;
final List<QueryOptimization> optimizations;
final DateTime createdAt;
final Duration validityPeriod;
QueryPlan({
required this.signature,
required this.analysis,
required this.optimizations,
required this.createdAt,
this.validityPeriod = const Duration(hours: 1),
});
bool get isValid => DateTime.now().difference(createdAt) < validityPeriod;
}
class QueryAnalysis {
final int complexity;
final IndexAnalysis indexAnalysis;
final int estimatedResults;
final FilterAnalysis filterAnalysis;
QueryAnalysis({
required this.complexity,
required this.indexAnalysis,
required this.estimatedResults,
required this.filterAnalysis,
});
}
class IndexAnalysis {
final List<String> availableIndexes;
final List<String> missingIndexes;
final List<String> usableIndexes;
IndexAnalysis({
required this.availableIndexes,
required this.missingIndexes,
required this.usableIndexes,
});
}
class FilterAnalysis {
final Map<String, double> selectivity;
final bool canReorder;
final List<String> optimalOrder;
FilterAnalysis({
required this.selectivity,
required this.canReorder,
required this.optimalOrder,
});
}
class QueryOptimization {
final OptimizationType type;
final String description;
final OptimizationImpact impact;
final Map<String, dynamic> details;
QueryOptimization({
required this.type,
required this.description,
required this.impact,
required this.details,
});
}
enum OptimizationType {
createIndex,
reorderFilters,
addLimit,
useCache,
partitionData,
}
enum OptimizationImpact { low, medium, high }
class QueryPerformanceTracker {
final Map<String, QueryPerformanceStats> _stats = {};
void recordExecution(String signature, Duration duration, bool success) {
final stats = _stats.putIfAbsent(
signature,
() => QueryPerformanceStats(signature),
);
stats.recordExecution(duration, success);
}
QueryPerformanceStats? getStats(String signature) {
return _stats[signature];
}
Map<String, QueryPerformanceStats> getAllStats() {
return Map.unmodifiable(_stats);
}
}
class QueryPerformanceStats {
final String signature;
int totalExecutions = 0;
int successfulExecutions = 0;
Duration totalDuration = Duration.zero;
Duration minDuration = Duration(days: 1);
Duration maxDuration = Duration.zero;
final List<Duration> recentDurations = [];
QueryPerformanceStats(this.signature);
void recordExecution(Duration duration, bool success) {
totalExecutions++;
totalDuration += duration;
if (success) {
successfulExecutions++;
}
if (duration < minDuration) {
minDuration = duration;
}
if (duration > maxDuration) {
maxDuration = duration;
}
recentDurations.add(duration);
if (recentDurations.length > 100) {
recentDurations.removeAt(0);
}
}
double get successRate => totalExecutions > 0
? successfulExecutions / totalExecutions : 0.0;
Duration get averageDuration => totalExecutions > 0
? Duration(microseconds: totalDuration.inMicroseconds ~/ totalExecutions)
: Duration.zero;
Duration get p95Duration {
if (recentDurations.isEmpty) return Duration.zero;
final sorted = List<Duration>.from(recentDurations)..sort();
final index = (sorted.length * 0.95).floor();
return sorted[index.clamp(0, sorted.length - 1)];
}
}
```#
### 2. Vector Search Optimization
```dart
// Specialized optimization for vector search operations
class VectorSearchOptimizer {
final VectorSpaceOptimizer _spaceOptimizer;
final Map<String, VectorSearchPlan> _searchPlans = {};
VectorSearchOptimizer(this._spaceOptimizer);
Future<OptimizedVectorSearch> optimizeVectorSearch({
required String vectorSpaceName,
required List<double> queryVector,
required int k,
Map<String, dynamic>? filters,
}) async {
final planKey = _generateSearchPlanKey(vectorSpaceName, k, filters);
// Check for cached plan
var plan = _searchPlans[planKey];
if (plan == null || plan.isExpired) {
plan = await _createSearchPlan(vectorSpaceName, k, filters);
_searchPlans[planKey] = plan;
}
return OptimizedVectorSearch(
vectorSpaceName: vectorSpaceName,
queryVector: queryVector,
k: k,
filters: filters,
plan: plan,
);
}
Future<VectorSearchPlan> _createSearchPlan(
String vectorSpaceName,
int k,
Map<String, dynamic>? filters,
) async {
// Analyze vector space characteristics
final spaceAnalysis = await _analyzeVectorSpace(vectorSpaceName);
// Determine optimal algorithm parameters
final algorithmParams = _optimizeAlgorithmParameters(
spaceAnalysis, k, filters);
// Analyze filter selectivity
final filterAnalysis = await _analyzeFilterSelectivity(
vectorSpaceName, filters);
return VectorSearchPlan(
vectorSpaceName: vectorSpaceName,
spaceAnalysis: spaceAnalysis,
algorithmParams: algorithmParams,
filterAnalysis: filterAnalysis,
createdAt: DateTime.now(),
);
}
Future<VectorSpaceAnalysis> _analyzeVectorSpace(String spaceName) async {
final metrics = _spaceOptimizer.usageMetrics[spaceName];
return VectorSpaceAnalysis(
vectorCount: metrics?.vectorCount ?? 0,
dimensions: 512, // Would get from actual space config
averageQueryLatency: metrics?.averageQueryLatencyMs ?? 0.0,
indexType: 'hnsw', // Would get from actual space config
memoryUsage: metrics?.memoryUsageBytes ?? 0,
);
}
Map<String, dynamic> _optimizeAlgorithmParameters(
VectorSpaceAnalysis analysis,
int k,
Map<String, dynamic>? filters,
) {
final params = <String, dynamic>{};
if (analysis.indexType == 'hnsw') {
// Optimize HNSW parameters
params['efSearch'] = _calculateOptimalEfSearch(analysis, k);
params['maxConnections'] = _calculateOptimalMaxConnections(analysis);
} else if (analysis.indexType == 'ivfflat') {
// Optimize IVFFlat parameters
params['nProbe'] = _calculateOptimalNProbe(analysis, k);
params['nLists'] = _calculateOptimalNLists(analysis);
}
// Adjust for filters
if (filters != null && filters.isNotEmpty) {
params['preFilter'] = _shouldPreFilter(analysis, filters);
params['filterSelectivity'] = _estimateFilterSelectivity(filters);
}
return params;
}
int _calculateOptimalEfSearch(VectorSpaceAnalysis analysis, int k) {
// Dynamic efSearch calculation based on accuracy vs speed tradeoff
int baseEfSearch = k * 2;
// Adjust based on vector count
if (analysis.vectorCount > 100000) {
baseEfSearch = (baseEfSearch * 1.5).round();
}
// Adjust based on current performance
if (analysis.averageQueryLatency > 100) {
baseEfSearch = (baseEfSearch * 0.8).round();
}
return baseEfSearch.clamp(k, k * 10);
}
int _calculateOptimalMaxConnections(VectorSpaceAnalysis analysis) {
// Optimize based on memory vs accuracy tradeoff
if (analysis.memoryUsage > 1024 * 1024 * 1024) { // > 1GB
return 16; // Lower connections to save memory
} else {
return 32; // Higher connections for better accuracy
}
}
Future<List<T>> executeOptimizedSearch<T>(
OptimizedVectorSearch search,
Future<List<T>> Function() executor,
) async {
final stopwatch = Stopwatch()..start();
try {
// Apply optimizations before execution
await _applyOptimizations(search);
final results = await executor();
stopwatch.stop();
// Record performance metrics
_spaceOptimizer.recordQueryMetric(
search.vectorSpaceName,
stopwatch.elapsed,
);
return results;
} catch (e) {
stopwatch.stop();
rethrow;
}
}
Future<void> _applyOptimizations(OptimizedVectorSearch search) async {
// Apply algorithm parameter optimizations
// This would configure the actual vector space with optimized parameters
}
String _generateSearchPlanKey(
String spaceName,
int k,
Map<String, dynamic>? filters,
) {
final filterKey = filters?.keys.join(',') ?? '';
return '${spaceName}_${k}_$filterKey';
}
}
class OptimizedVectorSearch {
final String vectorSpaceName;
final List<double> queryVector;
final int k;
final Map<String, dynamic>? filters;
final VectorSearchPlan plan;
OptimizedVectorSearch({
required this.vectorSpaceName,
required this.queryVector,
required this.k,
required this.filters,
required this.plan,
});
}
class VectorSearchPlan {
final String vectorSpaceName;
final VectorSpaceAnalysis spaceAnalysis;
final Map<String, dynamic> algorithmParams;
final FilterAnalysis filterAnalysis;
final DateTime createdAt;
final Duration validityPeriod;
VectorSearchPlan({
required this.vectorSpaceName,
required this.spaceAnalysis,
required this.algorithmParams,
required this.filterAnalysis,
required this.createdAt,
this.validityPeriod = const Duration(minutes: 30),
});
bool get isExpired => DateTime.now().difference(createdAt) > validityPeriod;
}
class VectorSpaceAnalysis {
final int vectorCount;
final int dimensions;
final double averageQueryLatency;
final String indexType;
final int memoryUsage;
VectorSpaceAnalysis({
required this.vectorCount,
required this.dimensions,
required this.averageQueryLatency,
required this.indexType,
required this.memoryUsage,
});
}
```### C
aching Strategies
#### 1. Multi-Level Caching System
```dart
// Comprehensive caching system for Vektagraf
class VektagrafCacheManager {
final L1Cache _l1Cache; // In-memory, fastest
final L2Cache _l2Cache; // Compressed in-memory
final L3Cache _l3Cache; // Persistent disk cache
final CacheMetrics _metrics;
VektagrafCacheManager({
int l1MaxSize = 1000,
int l2MaxSize = 10000,
int l3MaxSize = 100000,
}) : _l1Cache = L1Cache(l1MaxSize),
_l2Cache = L2Cache(l2MaxSize),
_l3Cache = L3Cache(l3MaxSize),
_metrics = CacheMetrics();
Future<T?> get<T>(String key) async {
_metrics.recordAccess(key);
// Try L1 cache first
final l1Result = _l1Cache.get<T>(key);
if (l1Result != null) {
_metrics.recordHit(key, CacheLevel.l1);
return l1Result;
}
// Try L2 cache
final l2Result = await _l2Cache.get<T>(key);
if (l2Result != null) {
_metrics.recordHit(key, CacheLevel.l2);
// Promote to L1
_l1Cache.put(key, l2Result);
return l2Result;
}
// Try L3 cache
final l3Result = await _l3Cache.get<T>(key);
if (l3Result != null) {
_metrics.recordHit(key, CacheLevel.l3);
// Promote to L2 and L1
await _l2Cache.put(key, l3Result);
_l1Cache.put(key, l3Result);
return l3Result;
}
_metrics.recordMiss(key);
return null;
}
Future<void> put<T>(String key, T value, {Duration? ttl}) async {
// Store in all cache levels
_l1Cache.put(key, value, ttl: ttl);
await _l2Cache.put(key, value, ttl: ttl);
await _l3Cache.put(key, value, ttl: ttl);
_metrics.recordStore(key);
}
Future<void> invalidate(String key) async {
_l1Cache.remove(key);
await _l2Cache.remove(key);
await _l3Cache.remove(key);
_metrics.recordInvalidation(key);
}
Future<void> invalidatePattern(String pattern) async {
final regex = RegExp(pattern);
await _l1Cache.removeWhere((key) => regex.hasMatch(key));
await _l2Cache.removeWhere((key) => regex.hasMatch(key));
await _l3Cache.removeWhere((key) => regex.hasMatch(key));
}
CacheStatistics getStatistics() {
return CacheStatistics(
l1Stats: _l1Cache.getStats(),
l2Stats: _l2Cache.getStats(),
l3Stats: _l3Cache.getStats(),
overallMetrics: _metrics.getOverallMetrics(),
);
}
}
// L1 Cache: Fast in-memory cache with LRU eviction
class L1Cache {
final int maxSize;
final Map<String, CacheEntry> _cache = {};
final List<String> _accessOrder = [];
L1Cache(this.maxSize);
T? get<T>(String key) {
final entry = _cache[key];
if (entry == null || entry.isExpired) {
_cache.remove(key);
_accessOrder.remove(key);
return null;
}
// Update access order (LRU)
_accessOrder.remove(key);
_accessOrder.add(key);
return entry.value as T;
}
void put<T>(String key, T value, {Duration? ttl}) {
// Remove if already exists
if (_cache.containsKey(key)) {
_accessOrder.remove(key);
}
// Evict if at capacity
while (_cache.length >= maxSize && _accessOrder.isNotEmpty) {
final oldestKey = _accessOrder.removeAt(0);
_cache.remove(oldestKey);
}
// Add new entry
_cache[key] = CacheEntry(
value: value,
expiresAt: ttl != null ? DateTime.now().add(ttl) : null,
);
_accessOrder.add(key);
}
void remove(String key) {
_cache.remove(key);
_accessOrder.remove(key);
}
Future<void> removeWhere(bool Function(String) predicate) async {
final keysToRemove = _cache.keys.where(predicate).toList();
for (final key in keysToRemove) {
remove(key);
}
}
CacheLevelStats getStats() {
return CacheLevelStats(
size: _cache.length,
maxSize: maxSize,
hitRate: 0.0, // Would be calculated from metrics
);
}
}
// L2 Cache: Compressed in-memory cache
class L2Cache {
final int maxSize;
final Map<String, CompressedCacheEntry> _cache = {};
L2Cache(this.maxSize);
Future<T?> get<T>(String key) async {
final entry = _cache[key];
if (entry == null || entry.isExpired) {
_cache.remove(key);
return null;
}
// Decompress and deserialize
return await entry.getValue<T>();
}
Future<void> put<T>(String key, T value, {Duration? ttl}) async {
// Evict if at capacity
if (_cache.length >= maxSize) {
_evictOldest();
}
// Compress and store
_cache[key] = CompressedCacheEntry(
compressedData: await _compress(value),
expiresAt: ttl != null ? DateTime.now().add(ttl) : null,
);
}
Future<void> remove(String key) async {
_cache.remove(key);
}
Future<void> removeWhere(bool Function(String) predicate) async {
final keysToRemove = _cache.keys.where(predicate).toList();
for (final key in keysToRemove) {
await remove(key);
}
}
void _evictOldest() {
if (_cache.isNotEmpty) {
final oldestKey = _cache.keys.first;
_cache.remove(oldestKey);
}
}
Future<Uint8List> _compress<T>(T value) async {
// Simplified compression - would use actual compression library
final json = jsonEncode(value);
return utf8.encode(json);
}
CacheLevelStats getStats() {
return CacheLevelStats(
size: _cache.length,
maxSize: maxSize,
hitRate: 0.0,
);
}
}
// L3 Cache: Persistent disk cache
class L3Cache {
final int maxSize;
final String cacheDir = '.cache/vektagraf';
final Map<String, DateTime> _index = {};
L3Cache(this.maxSize);
Future<T?> get<T>(String key) async {
final filePath = _getFilePath(key);
final file = File(filePath);
if (!await file.exists()) {
_index.remove(key);
return null;
}
try {
final data = await file.readAsBytes();
final json = utf8.decode(data);
return jsonDecode(json) as T;
} catch (e) {
// Remove corrupted cache entry
await file.delete();
_index.remove(key);
return null;
}
}
Future<void> put<T>(String key, T value, {Duration? ttl}) async {
// Ensure cache directory exists
final dir = Directory(cacheDir);
if (!await dir.exists()) {
await dir.create(recursive: true);
}
// Evict if at capacity
if (_index.length >= maxSize) {
await _evictOldest();
}
// Write to disk
final filePath = _getFilePath(key);
final file = File(filePath);
final json = jsonEncode(value);
await file.writeAsBytes(utf8.encode(json));
_index[key] = DateTime.now();
}
Future<void> remove(String key) async {
final filePath = _getFilePath(key);
final file = File(filePath);
if (await file.exists()) {
await file.delete();
}
_index.remove(key);
}
Future<void> removeWhere(bool Function(String) predicate) async {
final keysToRemove = _index.keys.where(predicate).toList();
for (final key in keysToRemove) {
await remove(key);
}
}
Future<void> _evictOldest() async {
if (_index.isNotEmpty) {
final oldestEntry = _index.entries.reduce((a, b) =>
a.value.isBefore(b.value) ? a : b);
await remove(oldestEntry.key);
}
}
String _getFilePath(String key) {
final hashedKey = key.hashCode.abs().toString();
return '$cacheDir/$hashedKey.cache';
}
CacheLevelStats getStats() {
return CacheLevelStats(
size: _index.length,
maxSize: maxSize,
hitRate: 0.0,
);
}
}
class CacheEntry {
final dynamic value;
final DateTime? expiresAt;
CacheEntry({
required this.value,
this.expiresAt,
});
bool get isExpired => expiresAt != null && DateTime.now().isAfter(expiresAt!);
}
class CompressedCacheEntry {
final Uint8List compressedData;
final DateTime? expiresAt;
CompressedCacheEntry({
required this.compressedData,
this.expiresAt,
});
bool get isExpired => expiresAt != null && DateTime.now().isAfter(expiresAt!);
Future<T> getValue<T>() async {
// Decompress and deserialize
final json = utf8.decode(compressedData);
return jsonDecode(json) as T;
}
}
enum CacheLevel { l1, l2, l3 }
class CacheMetrics {
final Map<String, int> _accessCounts = {};
final Map<String, Map<CacheLevel, int>> _hitCounts = {};
final Map<String, int> _missCounts = {};
void recordAccess(String key) {
_accessCounts[key] = (_accessCounts[key] ?? 0) + 1;
}
void recordHit(String key, CacheLevel level) {
_hitCounts.putIfAbsent(key, () => {});
_hitCounts[key]![level] = (_hitCounts[key]![level] ?? 0) + 1;
}
void recordMiss(String key) {
_missCounts[key] = (_missCounts[key] ?? 0) + 1;
}
void recordStore(String key) {
// Track storage operations
}
void recordInvalidation(String key) {
// Track invalidation operations
}
Map<String, dynamic> getOverallMetrics() {
final totalAccesses = _accessCounts.values.fold<int>(0, (sum, count) => sum + count);
final totalHits = _hitCounts.values.fold<int>(0, (sum, levelHits) =>
sum + levelHits.values.fold<int>(0, (levelSum, count) => levelSum + count));
final totalMisses = _missCounts.values.fold<int>(0, (sum, count) => sum + count);
return {
'total_accesses': totalAccesses,
'total_hits': totalHits,
'total_misses': totalMisses,
'hit_rate': totalAccesses > 0 ? totalHits / totalAccesses : 0.0,
'miss_rate': totalAccesses > 0 ? totalMisses / totalAccesses : 0.0,
};
}
}
class CacheStatistics {
final CacheLevelStats l1Stats;
final CacheLevelStats l2Stats;
final CacheLevelStats l3Stats;
final Map<String, dynamic> overallMetrics;
CacheStatistics({
required this.l1Stats,
required this.l2Stats,
required this.l3Stats,
required this.overallMetrics,
});
}
class CacheLevelStats {
final int size;
final int maxSize;
final double hitRate;
CacheLevelStats({
required this.size,
required this.maxSize,
required this.hitRate,
});
double get utilizationRate => size / maxSize;
}
```## Bes
t Practices
### Performance Optimization Methodology
#### 1. Systematic Performance Testing
```dart
// Comprehensive performance testing framework
class PerformanceTestSuite {
final VektagrafDatabase database;
final VektagrafProfiler profiler;
final List<PerformanceTest> tests = [];
PerformanceTestSuite(this.database) : profiler = VektagrafProfiler();
void addTest(PerformanceTest test) {
tests.add(test);
}
Future<PerformanceTestReport> runAllTests() async {
final results = <PerformanceTestResult>[];
for (final test in tests) {
print('Running test: ${test.name}');
try {
final result = await _runTest(test);
results.add(result);
print('✓ ${test.name}: ${result.summary}');
} catch (e) {
print('✗ ${test.name}: Failed - $e');
results.add(PerformanceTestResult(
testName: test.name,
success: false,
error: e.toString(),
duration: Duration.zero,
metrics: {},
));
}
}
return PerformanceTestReport(
results: results,
executedAt: DateTime.now(),
summary: _generateSummary(results),
);
}
Future<PerformanceTestResult> _runTest(PerformanceTest test) async {
// Setup test environment
await test.setup(database);
final stopwatch = Stopwatch()..start();
final session = profiler.startSession(test.name);
try {
// Execute test
final metrics = await test.execute(database, session);
stopwatch.stop();
session.end();
return PerformanceTestResult(
testName: test.name,
success: true,
duration: stopwatch.elapsed,
metrics: metrics,
profileData: session.getResult(),
);
} finally {
// Cleanup test environment
await test.cleanup(database);
}
}
Map<String, dynamic> _generateSummary(List<PerformanceTestResult> results) {
final successful = results.where((r) => r.success).length;
final failed = results.length - successful;
final totalDuration = results.fold<Duration>(
Duration.zero,
(sum, result) => sum + result.duration,
);
return {
'total_tests': results.length,
'successful': successful,
'failed': failed,
'success_rate': results.isNotEmpty ? successful / results.length : 0.0,
'total_duration_ms': totalDuration.inMilliseconds,
'average_duration_ms': results.isNotEmpty
? totalDuration.inMilliseconds / results.length : 0,
};
}
}
abstract class PerformanceTest {
String get name;
String get description;
Future<void> setup(VektagrafDatabase database);
Future<Map<String, dynamic>> execute(
VektagrafDatabase database,
ProfilerSession session,
);
Future<void> cleanup(VektagrafDatabase database);
}
class DatabaseOperationPerformanceTest implements PerformanceTest {
@override
String get name => 'database_operations';
@override
String get description => 'Test CRUD operation performance';
final int objectCount;
final List<TestObject> testObjects = [];
DatabaseOperationPerformanceTest({this.objectCount = 1000});
@override
Future<void> setup(VektagrafDatabase database) async {
// Generate test objects
for (int i = 0; i < objectCount; i++) {
testObjects.add(TestObject(
id: VektagrafId.generate(),
name: 'Test Object $i',
value: i,
data: List.generate(100, (j) => 'data_${i}_$j'),
));
}
}
@override
Future<Map<String, dynamic>> execute(
VektagrafDatabase database,
ProfilerSession session,
) async {
final metrics = <String, dynamic>{};
// Test create operations
session.recordEvent('create_start');
final createStopwatch = Stopwatch()..start();
await database.transaction((txn) async {
for (final obj in testObjects) {
await txn.save(obj);
}
});
createStopwatch.stop();
session.recordEvent('create_end');
session.recordMetric('create_duration_ms', createStopwatch.elapsedMilliseconds);
metrics['create_ops_per_second'] =
objectCount / (createStopwatch.elapsedMilliseconds / 1000.0);
// Test read operations
session.recordEvent('read_start');
final readStopwatch = Stopwatch()..start();
for (final obj in testObjects) {
await database.findById(obj.id);
}
readStopwatch.stop();
session.recordEvent('read_end');
session.recordMetric('read_duration_ms', readStopwatch.elapsedMilliseconds);
metrics['read_ops_per_second'] =
objectCount / (readStopwatch.elapsedMilliseconds / 1000.0);
// Test query operations
session.recordEvent('query_start');
final queryStopwatch = Stopwatch()..start();
final queryResults = await database.query((obj) =>
obj.type == 'TestObject').toList();
queryStopwatch.stop();
session.recordEvent('query_end');
session.recordMetric('query_duration_ms', queryStopwatch.elapsedMilliseconds);
metrics['query_result_count'] = queryResults.length;
metrics['query_duration_ms'] = queryStopwatch.elapsedMilliseconds;
return metrics;
}
@override
Future<void> cleanup(VektagrafDatabase database) async {
// Clean up test objects
await database.transaction((txn) async {
for (final obj in testObjects) {
await txn.delete(obj);
}
});
testObjects.clear();
}
}
class VectorSearchPerformanceTest implements PerformanceTest {
@override
String get name => 'vector_search';
@override
String get description => 'Test vector search performance';
final int vectorCount;
final int dimensions;
final List<TestVector> testVectors = [];
VectorSearchPerformanceTest({
this.vectorCount = 10000,
this.dimensions = 512,
});
@override
Future<void> setup(VektagrafDatabase database) async {
// Generate test vectors
final random = Random();
for (int i = 0; i < vectorCount; i++) {
final vector = List.generate(dimensions, (_) => random.nextDouble());
testVectors.add(TestVector(
id: VektagrafId.generate(),
embedding: vector,
metadata: {'index': i, 'category': 'test'},
));
}
// Insert test vectors
await database.transaction((txn) async {
for (final vector in testVectors) {
await txn.save(vector);
}
});
}
@override
Future<Map<String, dynamic>> execute(
VektagrafDatabase database,
ProfilerSession session,
) async {
final metrics = <String, dynamic>{};
final random = Random();
// Generate query vectors
final queryVectors = List.generate(100, (_) =>
List.generate(dimensions, (_) => random.nextDouble()));
// Test vector search performance
session.recordEvent('vector_search_start');
final searchStopwatch = Stopwatch()..start();
int totalResults = 0;
for (final queryVector in queryVectors) {
final results = await database.testVectors()
.vectorSearch(
query: queryVector,
limit: 10,
);
totalResults += results.length;
}
searchStopwatch.stop();
session.recordEvent('vector_search_end');
metrics['search_count'] = queryVectors.length;
metrics['total_results'] = totalResults;
metrics['average_results_per_query'] = totalResults / queryVectors.length;
metrics['total_duration_ms'] = searchStopwatch.elapsedMilliseconds;
metrics['average_query_duration_ms'] =
searchStopwatch.elapsedMilliseconds / queryVectors.length;
metrics['queries_per_second'] =
queryVectors.length / (searchStopwatch.elapsedMilliseconds / 1000.0);
return metrics;
}
@override
Future<void> cleanup(VektagrafDatabase database) async {
// Clean up test vectors
await database.transaction((txn) async {
for (final vector in testVectors) {
await txn.delete(vector);
}
});
testVectors.clear();
}
}
class PerformanceTestResult {
final String testName;
final bool success;
final String? error;
final Duration duration;
final Map<String, dynamic> metrics;
final BenchmarkResult? profileData;
PerformanceTestResult({
required this.testName,
required this.success,
this.error,
required this.duration,
required this.metrics,
this.profileData,
});
String get summary {
if (!success) return 'Failed';
final opsPerSecond = metrics['ops_per_second'] as double?;
if (opsPerSecond != null) {
return '${opsPerSecond.toStringAsFixed(1)} ops/sec';
}
return '${duration.inMilliseconds}ms';
}
}
class PerformanceTestReport {
final List<PerformanceTestResult> results;
final DateTime executedAt;
final Map<String, dynamic> summary;
PerformanceTestReport({
required this.results,
required this.executedAt,
required this.summary,
});
void printReport() {
print('\n=== Performance Test Report ===');
print('Executed: ${executedAt.toIso8601String()}');
print('Tests: ${summary['total_tests']}');
print('Success Rate: ${(summary['success_rate'] * 100).toStringAsFixed(1)}%');
print('Total Duration: ${summary['total_duration_ms']}ms');
print('\nResults:');
for (final result in results) {
final status = result.success ? '✓' : '✗';
print(' $status ${result.testName}: ${result.summary}');
if (!result.success && result.error != null) {
print(' Error: ${result.error}');
}
}
print('\n');
}
}
// Test data models
@VektagrafModel()
class TestObject extends VektagrafObject {
@VektagrafProperty()
String name;
@VektagrafProperty()
int value;
@VektagrafProperty()
List<String> data;
TestObject({
required VektagrafId id,
required this.name,
required this.value,
required this.data,
}) : super(id: id);
}
@VektagrafModel()
class TestVector extends VektagrafObject {
@VektagrafProperty()
@VektagrafVector(dimensions: 512)
List<double> embedding;
@VektagrafProperty()
Map<String, dynamic> metadata;
TestVector({
required VektagrafId id,
required this.embedding,
required this.metadata,
}) : super(id: id);
}
```###
# 2. Performance Monitoring and Alerting
```dart
// Continuous performance monitoring system
class PerformanceMonitor {
final VektagrafDatabase database;
final SystemMetricsCollector metricsCollector;
final List<PerformanceThreshold> thresholds = [];
final StreamController<PerformanceAlert> alertController;
Timer? _monitoringTimer;
PerformanceMonitor(this.database, this.metricsCollector)
: alertController = StreamController<PerformanceAlert>.broadcast();
Stream<PerformanceAlert> get alerts => alertController.stream;
void addThreshold(PerformanceThreshold threshold) {
thresholds.add(threshold);
}
void startMonitoring({Duration interval = const Duration(minutes: 1)}) {
_monitoringTimer = Timer.periodic(interval, (_) => _checkPerformance());
}
void stopMonitoring() {
_monitoringTimer?.cancel();
}
Future<void> _checkPerformance() async {
try {
final metrics = await _collectCurrentMetrics();
for (final threshold in thresholds) {
final violation = threshold.checkViolation(metrics);
if (violation != null) {
alertController.add(violation);
}
}
} catch (e) {
print('Error during performance monitoring: $e');
}
}
Future<PerformanceMetrics> _collectCurrentMetrics() async {
// Collect various performance metrics
final queryLatencies = await _getRecentQueryLatencies();
final memoryUsage = await _getCurrentMemoryUsage();
final throughput = await _getCurrentThroughput();
final errorRate = await _getCurrentErrorRate();
return PerformanceMetrics(
averageQueryLatency: queryLatencies.isNotEmpty
? queryLatencies.reduce((a, b) => a + b) / queryLatencies.length
: 0.0,
p95QueryLatency: _calculatePercentile(queryLatencies, 0.95),
memoryUsageRatio: memoryUsage,
throughputOpsPerSecond: throughput,
errorRate: errorRate,
timestamp: DateTime.now(),
);
}
Future<List<double>> _getRecentQueryLatencies() async {
// Get recent query latencies from metrics
final metrics = await metricsCollector.queryMetrics(
name: 'vektagraf_query_duration_seconds',
startTime: DateTime.now().subtract(Duration(minutes: 5)),
endTime: DateTime.now(),
);
return metrics.map((m) => m.value).toList();
}
double _calculatePercentile(List<double> values, double percentile) {
if (values.isEmpty) return 0.0;
final sorted = List<double>.from(values)..sort();
final index = (sorted.length * percentile).floor();
return sorted[index.clamp(0, sorted.length - 1)];
}
}
class PerformanceThreshold {
final String name;
final String metric;
final double threshold;
final ThresholdComparison comparison;
final Duration sustainedDuration;
final AlertSeverity severity;
final List<DateTime> _violations = [];
PerformanceThreshold({
required this.name,
required this.metric,
required this.threshold,
required this.comparison,
this.sustainedDuration = const Duration(minutes: 2),
this.severity = AlertSeverity.warning,
});
PerformanceAlert? checkViolation(PerformanceMetrics metrics) {
final value = _getMetricValue(metrics);
final isViolation = _checkThreshold(value);
final now = DateTime.now();
if (isViolation) {
_violations.add(now);
}
// Remove old violations
_violations.removeWhere((time) =>
now.difference(time) > sustainedDuration);
// Check if violation is sustained
if (_violations.isNotEmpty &&
now.difference(_violations.first) >= sustainedDuration) {
return PerformanceAlert(
name: name,
metric: metric,
currentValue: value,
threshold: threshold,
severity: severity,
triggeredAt: now,
sustainedFor: now.difference(_violations.first),
);
}
return null;
}
double _getMetricValue(PerformanceMetrics metrics) {
switch (metric) {
case 'average_query_latency':
return metrics.averageQueryLatency;
case 'p95_query_latency':
return metrics.p95QueryLatency;
case 'memory_usage_ratio':
return metrics.memoryUsageRatio;
case 'throughput':
return metrics.throughputOpsPerSecond;
case 'error_rate':
return metrics.errorRate;
default:
return 0.0;
}
}
bool _checkThreshold(double value) {
switch (comparison) {
case ThresholdComparison.greaterThan:
return value > threshold;
case ThresholdComparison.lessThan:
return value < threshold;
case ThresholdComparison.equals:
return value == threshold;
}
}
}
class PerformanceMetrics {
final double averageQueryLatency;
final double p95QueryLatency;
final double memoryUsageRatio;
final double throughputOpsPerSecond;
final double errorRate;
final DateTime timestamp;
PerformanceMetrics({
required this.averageQueryLatency,
required this.p95QueryLatency,
required this.memoryUsageRatio,
required this.throughputOpsPerSecond,
required this.errorRate,
required this.timestamp,
});
}
class PerformanceAlert {
final String name;
final String metric;
final double currentValue;
final double threshold;
final AlertSeverity severity;
final DateTime triggeredAt;
final Duration sustainedFor;
PerformanceAlert({
required this.name,
required this.metric,
required this.currentValue,
required this.threshold,
required this.severity,
required this.triggeredAt,
required this.sustainedFor,
});
@override
String toString() {
return '${severity.name.toUpperCase()}: $name - '
'$metric is $currentValue (threshold: $threshold) '
'for ${sustainedFor.inMinutes} minutes';
}
}
enum ThresholdComparison { greaterThan, lessThan, equals }
enum AlertSeverity { info, warning, critical }
Scaling Strategies
1. Horizontal Scaling Architecture
// Distributed Vektagraf architecture for horizontal scaling
class DistributedVektagrafCluster {
final List<VektagrafNode> nodes = [];
final ConsistentHashRing hashRing;
final ClusterCoordinator coordinator;
DistributedVektagrafCluster({
required List<String> nodeEndpoints,
}) : hashRing = ConsistentHashRing(),
coordinator = ClusterCoordinator() {
// Initialize nodes
for (final endpoint in nodeEndpoints) {
final node = VektagrafNode(endpoint);
nodes.add(node);
hashRing.addNode(node);
}
}
Future<void> initialize() async {
// Initialize all nodes
for (final node in nodes) {
await node.initialize();
}
// Start cluster coordination
await coordinator.start(nodes);
}
Future<T> executeOperation<T>(
String key,
Future<T> Function(VektagrafNode) operation,
) async {
final targetNode = hashRing.getNode(key);
try {
return await operation(targetNode);
} catch (e) {
// Handle node failure with failover
return await _handleFailover(key, operation, targetNode);
}
}
Future<T> _handleFailover<T>(
String key,
Future<T> Function(VektagrafNode) operation,
VektagrafNode failedNode,
) async {
// Mark node as failed
coordinator.markNodeFailed(failedNode);
// Get backup node
final backupNode = hashRing.getBackupNode(key, failedNode);
if (backupNode != null) {
return await operation(backupNode);
}
throw ClusterException('No available nodes for key: $key');
}
Future<List<T>> executeDistributedQuery<T>(
Future<List<T>> Function(VektagrafNode) query,
) async {
final results = <T>[];
final futures = <Future<List<T>>>[];
// Execute query on all healthy nodes
for (final node in nodes) {
if (coordinator.isNodeHealthy(node)) {
futures.add(query(node));
}
}
// Collect results from all nodes
final nodeResults = await Future.wait(futures);
for (final nodeResult in nodeResults) {
results.addAll(nodeResult);
}
return results;
}
Future<void> rebalanceCluster() async {
await coordinator.rebalanceData(nodes, hashRing);
}
}
class VektagrafNode {
final String endpoint;
late VektagrafDatabase database;
bool isHealthy = true;
VektagrafNode(this.endpoint);
Future<void> initialize() async {
// Initialize database connection
database = await VektagrafDatabase.open(
'node_${endpoint.hashCode}.db',
config: VektagrafConfig(
// Node-specific configuration
),
);
}
Future<bool> healthCheck() async {
try {
// Perform health check query
await database.query((_) => false).take(1).toList();
isHealthy = true;
return true;
} catch (e) {
isHealthy = false;
return false;
}
}
}
class ConsistentHashRing {
final Map<int, VektagrafNode> _ring = {};
final int _virtualNodes = 150;
void addNode(VektagrafNode node) {
for (int i = 0; i < _virtualNodes; i++) {
final hash = _hash('${node.endpoint}:$i');
_ring[hash] = node;
}
}
void removeNode(VektagrafNode node) {
for (int i = 0; i < _virtualNodes; i++) {
final hash = _hash('${node.endpoint}:$i');
_ring.remove(hash);
}
}
VektagrafNode getNode(String key) {
if (_ring.isEmpty) {
throw ClusterException('No nodes available in hash ring');
}
final keyHash = _hash(key);
// Find the first node clockwise from the key hash
final sortedHashes = _ring.keys.toList()..sort();
for (final hash in sortedHashes) {
if (hash >= keyHash) {
return _ring[hash]!;
}
}
// Wrap around to the first node
return _ring[sortedHashes.first]!;
}
VektagrafNode? getBackupNode(String key, VektagrafNode excludeNode) {
final keyHash = _hash(key);
final sortedHashes = _ring.keys.toList()..sort();
for (final hash in sortedHashes) {
if (hash >= keyHash) {
final node = _ring[hash]!;
if (node != excludeNode && node.isHealthy) {
return node;
}
}
}
// Wrap around
for (final hash in sortedHashes) {
final node = _ring[hash]!;
if (node != excludeNode && node.isHealthy) {
return node;
}
}
return null;
}
int _hash(String input) {
return input.hashCode.abs();
}
}
class ClusterCoordinator {
final Map<VektagrafNode, NodeStatus> _nodeStatuses = {};
Timer? _healthCheckTimer;
Future<void> start(List<VektagrafNode> nodes) async {
// Initialize node statuses
for (final node in nodes) {
_nodeStatuses[node] = NodeStatus.healthy;
}
// Start periodic health checks
_healthCheckTimer = Timer.periodic(
Duration(seconds: 30),
(_) => _performHealthChecks(nodes),
);
}
void stop() {
_healthCheckTimer?.cancel();
}
void markNodeFailed(VektagrafNode node) {
_nodeStatuses[node] = NodeStatus.failed;
}
bool isNodeHealthy(VektagrafNode node) {
return _nodeStatuses[node] == NodeStatus.healthy;
}
Future<void> _performHealthChecks(List<VektagrafNode> nodes) async {
for (final node in nodes) {
try {
final isHealthy = await node.healthCheck();
_nodeStatuses[node] = isHealthy ? NodeStatus.healthy : NodeStatus.failed;
} catch (e) {
_nodeStatuses[node] = NodeStatus.failed;
}
}
}
Future<void> rebalanceData(
List<VektagrafNode> nodes,
ConsistentHashRing hashRing,
) async {
// Implement data rebalancing logic
// This would involve moving data between nodes to maintain balance
}
}
enum NodeStatus { healthy, degraded, failed }
class ClusterException implements Exception {
final String message;
ClusterException(this.message);
@override
String toString() => 'ClusterException: $message';
}
Summary
This chapter covered comprehensive performance tuning and optimization for Vektagraf applications, including:
Key Takeaways
- Systematic Approach: Use profiling, analysis, optimization, and validation cycles
- Memory Optimization: Implement efficient memory usage and garbage collection strategies
- Query Optimization: Analyze and optimize query performance with intelligent caching
- Vector Search Tuning: Optimize vector search algorithms and parameters
- Scaling Strategies: Design horizontal scaling with distributed architectures
Next Steps
- Chapter 15: Learn about production deployment patterns
- Chapter 16: Explore scaling and high availability techniques
- Chapter 17: Discover DevOps and CI/CD integration strategies
No Comments